Suppr超能文献

使用稀疏采样和三维统计模型进行头皮表面估计与头部配准。

Scalp surface estimation and head registration using sparse sampling and 3D statistical models.

作者信息

Schlesinger Oded, Kundu Raj, Isaev Dmitry, Choi Jessica Y, Goetz Stefan M, Turner Dennis A, Sapiro Guillermo, Peterchev Angel V, Di Martino J Matias

机构信息

Department of Electrical and Computer Engineering, Duke University, Durham, 27708, NC, USA.

Department of Psychiatry & Behavioral Sciences, Duke University, Durham, 27710, NC, USA; Boston University School of Medicine, Boston, 02118, MA, USA.

出版信息

Comput Biol Med. 2024 Aug;178:108689. doi: 10.1016/j.compbiomed.2024.108689. Epub 2024 Jun 6.

Abstract

Registering the head and estimating the scalp surface are important for various biomedical procedures, including those using neuronavigation to localize brain stimulation or recording. However, neuronavigation systems rely on manually-identified fiducial head targets and often require a patient-specific MRI for accurate registration, limiting adoption. We propose a practical technique capable of inferring the scalp shape and use it to accurately register the subject's head. Our method does not require anatomical landmark annotation or an individual MRI scan, yet achieves accurate registration of the subject's head and estimation of its surface. The scalp shape is estimated from surface samples easily acquired using existing pointer tools, and registration exploits statistical head model priors. Our method allows for the acquisition of non-trivial shapes from a limited number of data points while leveraging their object class priors, surpassing the accuracy of common reconstruction and registration methods using the same tools. The proposed approach is evaluated in a virtual study with head MRI data from 1152 subjects, achieving an average reconstruction root-mean-square error of 2.95 mm, which outperforms a common neuronavigation technique by 2.70 mm. We also characterize the error under different conditions and provide guidelines for efficient sampling. Furthermore, we demonstrate and validate the proposed method on data from 50 subjects collected with conventional neuronavigation tools and setup, obtaining an average root-mean-square error of 2.89 mm; adding landmark-based registration improves this error to 2.63 mm. The simulation and experimental results support the proposed method's effectiveness with or without landmark annotation, highlighting its broad applicability.

摘要

对头进行配准并估计头皮表面对于各种生物医学程序都很重要,包括那些使用神经导航来定位脑刺激或记录的程序。然而,神经导航系统依赖于手动识别的基准头部靶点,并且通常需要特定患者的磁共振成像(MRI)才能进行精确配准,这限制了其应用。我们提出了一种实用技术,能够推断头皮形状并将其用于精确配准受试者的头部。我们的方法不需要解剖标志点标注或个体MRI扫描,但仍能实现受试者头部的精确配准及其表面的估计。头皮形状是根据使用现有指针工具轻松获取的表面样本估计的,配准利用了统计头部模型先验信息。我们的方法允许从有限数量的数据点获取复杂形状,同时利用其对象类先验信息,超越了使用相同工具的常见重建和配准方法的精度。在一项对1152名受试者的头部MRI数据进行的虚拟研究中对所提出的方法进行了评估,平均重建均方根误差为2.95毫米,比一种常见的神经导航技术高出2.70毫米。我们还表征了不同条件下的误差,并提供了有效采样的指导方针。此外,我们在使用传统神经导航工具和设置收集的50名受试者的数据上演示并验证了所提出的方法,获得的平均均方根误差为2.89毫米;添加基于标志点的配准可将此误差提高到2.63毫米。模拟和实验结果支持了所提出方法在有无标志点标注情况下的有效性,突出了其广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d98c/11265975/b6a1e4fbce0a/nihms-2003543-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验