Suppr超能文献

北京安定医院精神科急诊药物过量自杀未遂患者的特征。

Characteristics of drug overdose suicide attempts presenting to the psychiatric emergency department of Beijing Anding Hospital.

机构信息

Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, & the Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.

出版信息

BMC Public Health. 2024 Jun 14;24(1):1597. doi: 10.1186/s12889-024-19095-4.

Abstract

BACKGROUND

Overdose-related suicide attempts represent a significant portion of self-harm presentations in the psychiatric emergency department (ED). Identifying specific patient characteristics associated with these attempts holds promise for pinpointing drug classes with elevated risk and paving the way for tailored suicide prevention interventions. This study aims to examine the demographic profiles of ED patients who had experienced overdose-related suicide attempts.

METHODS

This retrospective study was conducted at Beijing Anding Hospital, Capital Medical University, from January 2020 to December 2021. Patients with psychiatric drug overdose suicide attempts presenting to the psychiatric ED were included. Sociodemographic characteristics and the specific classes of drugs involved were collected, and analysed descriptively.

RESULTS

This study examined 252 overdose patients, excluding 51 patients treated with alcohol or nonpsychiatric drugs, and a total 201 cases were included. The mean age of the patients was 28 ± 16 years (median 23, range 12-78), and 82% (n = 165) of the sample were females. Notably, nearly half (45%) of the patients were aged ≤ 20 years. While the number of cases decreased with increasing age, a significant increase was observed in 2021 compared to 2020. Benzodiazepines (BZDs) were the most frequently implicated substance class (n = 126, 63%), followed by antidepressants (n = 96, 48%), antipsychotics (n = 44, 22%), Z-drugs (n = 43, 21%), and mood stabilizers (n = 36, 18%). For adolescents, antidepressants (n = 52, 71%) overtook BZDs (n = 38, 52%) as the most common drug. The monthly distribution of cases revealed peaks in April and November. Furthermore, 21% (n = 42) of patients ingested more than two psychotropic medications concurrently. Finally, approximately half (n = 92) of the patients required inpatient admission for further treatment. Comparisons between hospitalized and nonhospitalized patients did not reveal any significant differences.

CONCLUSIONS

The present study revealed a greater prevalence of suicide overdose attempts among young females receiving prescriptions for antidepressants and/or BZDs. This finding suggests a potential need for enhanced monitoring of suicidal behaviour in this specific population when prescribing psychotropic medications. These findings contribute to the growing body of knowledge regarding drug overdose suicide attempts in psychiatric emergency settings and underscore the importance of further research to develop targeted prevention interventions.

摘要

背景

在精神科急诊室(ED)中,与药物过量相关的自杀企图占自我伤害就诊的很大一部分。确定与这些企图相关的特定患者特征有望确定具有较高风险的药物类别,并为量身定制的自杀预防干预措施铺平道路。本研究旨在检查在精神科 ED 经历过与药物过量相关的自杀企图的患者的人口统计学特征。

方法

本回顾性研究在北京安定医院进行,时间为 2020 年 1 月至 2021 年 12 月。研究纳入了因精神科药物过量自杀而就诊于精神科 ED 的患者。收集了患者的社会人口统计学特征和涉及的特定药物类别,并进行了描述性分析。

结果

本研究共检查了 252 名药物过量患者,排除了 51 名接受酒精或非精神科药物治疗的患者,共有 201 例患者被纳入研究。患者的平均年龄为 28±16 岁(中位数 23 岁,范围 12-78 岁),82%(n=165)为女性。值得注意的是,近一半(45%)的患者年龄≤20 岁。虽然随着年龄的增长,病例数量有所减少,但 2021 年与 2020 年相比显著增加。苯二氮䓬类药物(BZDs)是最常涉及的物质类别(n=126,63%),其次是抗抑郁药(n=96,48%)、抗精神病药(n=44,22%)、Z 类药物(n=43,21%)和心境稳定剂(n=36,18%)。对于青少年来说,抗抑郁药(n=52,71%)超过了苯二氮䓬类药物(n=38,52%)成为最常见的药物。病例的月度分布显示 4 月和 11 月有高峰。此外,21%(n=42)的患者同时服用两种以上精神药物。最后,大约一半(n=92)的患者需要住院进一步治疗。住院和非住院患者之间的比较没有发现任何显著差异。

结论

本研究表明,接受抗抑郁药和/或苯二氮䓬类药物处方的年轻女性中,自杀性药物过量企图的发生率更高。这一发现表明,在开具精神药物时,可能需要加强对这一特定人群自杀行为的监测。这些发现为精神科急诊环境中药物过量自杀企图的研究提供了更多的知识,并强调了进一步研究制定有针对性的预防干预措施的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b53/11179331/0351a4644548/12889_2024_19095_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验