Suppr超能文献

触及天花板?深度 EEG 病理分类的经验缩放行为。

Reaching the ceiling? Empirical scaling behaviour for deep EEG pathology classification.

机构信息

Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Engelbergerstr. 21, 79106, Freiburg, Germany; Neurorobotics Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Koehler-Allee 80, 79110, Freiburg, Germany; BrainLinks-BrainTools, Institute for Machine-Brain Interfacing Technology, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.

Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Engelbergerstr. 21, 79106, Freiburg, Germany; BrainLinks-BrainTools, Institute for Machine-Brain Interfacing Technology, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany; Machine Learning Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Koehler-Allee 74, 79110, Freiburg, Germany.

出版信息

Comput Biol Med. 2024 Aug;178:108681. doi: 10.1016/j.compbiomed.2024.108681. Epub 2024 Jun 7.

Abstract

Machine learning techniques, particularly deep convolutional neural networks (ConvNets), are increasingly being used to automate clinical EEG analysis, with the potential to reduce the clinical burden and improve patient care. However, further research is required before they can be used in clinical settings, particularly regarding the impact of the number of training samples and model parameters on their testing error. To address this, we present a comprehensive study of the empirical scaling behaviour of ConvNets for EEG pathology classification. We analysed the testing error with increasing the training samples and model size for four different ConvNet architectures. The focus of our experiments is width scaling, and we have increased the number of parameters to up to 1.8 million. Our evaluation was based on two publicly available datasets: the Temple University Hospital (TUH) Abnormal EEG Corpus and the TUH Abnormal Expansion Balanced EEG Corpus, which together contain 10,707 training samples. The results show that the testing error follows a saturating power-law with both model and dataset size. This pattern is consistent across different datasets and ConvNet architectures. Furthermore, empirically observed accuracies saturate at 85%-87%, which may be due to an imperfect inter-rater agreement on the clinical labels. The empirical scaling behaviour of the test performance with dataset and model size has significant implications for deep EEG pathology classification research and practice. Our findings highlight the potential of deep ConvNets for high-performance EEG pathology classification, and the identified scaling relationships provide valuable recommendations for the advancement of automated EEG diagnostics.

摘要

机器学习技术,特别是深度卷积神经网络(ConvNets),正越来越多地被用于自动化临床 EEG 分析,这有可能减轻临床负担并改善患者护理。然而,在将它们应用于临床环境之前,还需要进一步的研究,特别是关于训练样本数量和模型参数对测试误差的影响。为了解决这个问题,我们对 ConvNets 用于 EEG 病理分类的经验缩放行为进行了全面研究。我们分析了四种不同 ConvNet 架构在增加训练样本和模型大小时的测试误差。我们实验的重点是宽度缩放,我们将参数数量增加到了 180 万。我们的评估基于两个公开可用的数据集:Temple University Hospital (TUH) 异常 EEG 语料库和 TUH 异常扩展平衡 EEG 语料库,它们共包含 10707 个训练样本。结果表明,测试误差随着模型和数据集大小呈饱和幂律分布。这种模式在不同的数据集和 ConvNet 架构中是一致的。此外,经验观察到的准确率在 85%-87%之间饱和,这可能是由于临床标签的评分者间存在不完美的一致性。测试性能随数据集和模型大小的经验缩放行为对深度 EEG 病理分类研究和实践具有重要意义。我们的发现强调了深度 ConvNets 用于高性能 EEG 病理分类的潜力,并且确定的缩放关系为自动化 EEG 诊断的发展提供了有价值的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验