Suppr超能文献

基于脑电图(EEG)数据的癫痫发作分类的机器学习和深度学习模型的再训练与评估

Retraining and evaluation of machine learning and deep learning models for seizure classification from EEG data.

作者信息

Carvajal-Dossman Juan Pablo, Guio Laura, García-Orjuela Danilo, Guzmán-Porras Jennifer J, Garces Kelly, Naranjo Andres, Maradei-Anaya Silvia Juliana, Duitama Jorge

机构信息

System and computing engineering department, Universidad de Los Andes, Bogota, Colombia.

HOMI, Fundación Hospital Pediátrico La Misericordia, Bogota, Colombia.

出版信息

Sci Rep. 2025 May 2;15(1):15345. doi: 10.1038/s41598-025-98389-y.

Abstract

Electroencephalography (EEG) is one of the most used techniques to perform diagnosis of epilepsy. However, manual annotation of seizures in EEG data is a major time-consuming step in the analysis process of EEGs. Different machine learning models have been developed to perform automated detection of seizures from EEGs. However, a large gap is observed between initial accuracies and those observed in clinical practice. In this work, we reproduced and assessed the accuracy of a large number of models, including deep learning networks, for detection of seizures from EEGs. Benchmarking included three different datasets for training and initial testing, and a manually annotated EEG from a local patient for further testing. Random forest and a convolutional neural network achieved the best results on public data, but a large reduction of accuracy was observed testing with the local data, especially for the neural network. We expect that the retrained models and the data available in this work will contribute to the integration of machine learning techniques as tools to improve the accuracy of diagnosis in clinical settings.

摘要

脑电图(EEG)是癫痫诊断中最常用的技术之一。然而,EEG数据中癫痫发作的手动标注是EEG分析过程中一个主要的耗时步骤。已经开发了不同的机器学习模型来自动检测EEG中的癫痫发作。然而,初始准确率与临床实践中观察到的准确率之间存在很大差距。在这项工作中,我们重现并评估了大量模型(包括深度学习网络)从EEG中检测癫痫发作的准确率。基准测试包括三个不同的数据集用于训练和初始测试,以及一个来自当地患者的手动标注的EEG用于进一步测试。随机森林和卷积神经网络在公共数据上取得了最佳结果,但在用本地数据测试时观察到准确率大幅下降,尤其是对于神经网络。我们期望在这项工作中重新训练的模型和可用数据将有助于将机器学习技术作为工具进行整合,以提高临床环境中的诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb67/12048661/750d1f815bfd/41598_2025_98389_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验