Suppr超能文献

加州利用 INLA 方法进行 PM 和臭氧的时空联合分析。

Spatiotemporal joint analysis of PM and Ozone in California with INLA approach.

机构信息

School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215123, China; Department of Biostatistics, University of Washington, 1410 Northeast Campus Parkway, Seattle, 98105, WA, USA.

Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215123, China.

出版信息

J Environ Manage. 2024 Jul;363:121294. doi: 10.1016/j.jenvman.2024.121294. Epub 2024 Jun 8.

Abstract

The substantial threat of concurrent air pollutants to public health is increasingly severe under climate change. To identify the common drivers and extent of spatiotemporal similarity of PM and ozone (O), this paper proposed a log Gaussian-Gumbel Bayesian hierarchical model allowing for sharing a stochastic partial differential equation and autoregressive model of order one (SPDE-AR(1)) spatiotemporal interaction structure. The proposed model, implemented by the approach of integrated nested Laplace approximation (INLA), outperforms in terms of estimation accuracy and prediction capacity for its increased parsimony and reduced uncertainty, especially for the shared O sub-model. Besides the consistently significant influence of temperature (positive), extreme drought (positive), fire burnt area (positive), gross domestic product (GDP) per capita (positive), and wind speed (negative) on both PM and O, surface pressure and precipitation demonstrate positive associations with PM and O, respectively. While population density relates to neither. In addition, our results demonstrate similar spatiotemporal interactions between PM and O, indicating that the spatial and temporal variations of these pollutants show relatively considerable consistency in California. Finally, with the aid of the excursion function, we see that the areas around the intersection of San Luis Obispo and Santa Barbara counties are likely to exceed the unhealthy O level for USG simultaneously with other areas throughout the year. Our findings provide new insights for regional and seasonal strategies in the co-control of PM and O. Our methodology is expected to be utilized when interest lies in multiple interrelated processes in the fields of environment and epidemiology.

摘要

在气候变化的背景下,空气污染物对公众健康的实质性威胁日益严重。为了识别 PM 和臭氧(O)的共同驱动因素和时空相似性的程度,本文提出了一种对数高斯-吉布斯贝叶斯分层模型,允许共享随机偏微分方程和一阶自回归模型(SPDE-AR(1))时空交互结构。该模型通过集成嵌套拉普拉斯逼近(INLA)方法实现,在估计精度和预测能力方面表现出色,因为它具有更高的简约性和降低的不确定性,特别是对于共享的 O 子模型。除了温度(正)、极端干旱(正)、火灾燃烧面积(正)、人均国内生产总值(GDP)(正)和风速(负)对 PM 和 O 始终有显著影响外,地面气压和降水分别与 PM 和 O 呈正相关。而人口密度与两者均无关。此外,我们的结果表明 PM 和 O 之间存在相似的时空相互作用,这表明这些污染物的时空变化在加利福尼亚州具有相当大的一致性。最后,借助逸出函数,我们发现圣路易斯奥比斯波县和圣巴巴拉县交界处周围的地区很可能会在一年中的其他时间与其他地区一样,同时超过美国环保署的不健康 O 水平。我们的研究结果为 PM 和 O 的联合控制提供了新的见解,包括区域和季节性策略。当对环境和流行病学领域的多个相互关联的过程感兴趣时,我们的方法有望得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验