Suppr超能文献

基于多通道 EEG 潜在因子的阿尔茨海默病特征提取与识别。

Feature Extraction and Identification of Alzheimer's Disease based on Latent Factor of Multi-Channel EEG.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:1557-1567. doi: 10.1109/TNSRE.2021.3101240. Epub 2021 Aug 10.

Abstract

Alzheimer's disease is a neurodegenerative disease in old age, early diagnosis will help to delay the progression of the disease. Presently, the features of brain functional diseases can be obtained with EEG analysis, but the relationship between characteristics of EEG and Alzheimer's disease has not been clearly clarified. In this work, we hypothesize that there exist default brain variables (latent factors) across subjects in disease processes, decoding latent factor from brain activity contributes to the study of cognitive impairment. To that end, this work proposes to extract characteristics of Alzheimer's disease by combing latent factors of EEG with variational auto-encoder to realize disease identification. Primarily, power spectrum characteristics is investigated and it is found that the dominant frequency of two groups is different. Further analysis reveals that latent factor distribution of Alzheimer's disease exists obvious differences with normal group in the theta frequency band. Moreover, the latent factors are projected onto the three-dimensional state space and the transient rotation of neural state is found, which shows the dynamic characteristics of latent factors. In addition, Takagi-Sugeno-Kang classifier is adopted and multiple latent factors are fed into Takagi-Sugeno-Kang classifier for decoding. Compared with linear classifier, Takagi-Sugeno-Kang fuzzy classifier has better performance in classification of energy feature from sub-frequency bands of latent factors. The accuracy of identification could up to 98.10% when the combination of energy features of four frequency bands is used as model input. Collectively, this work provides a feasible tool for identification of neurological dysfunction from the view of latent factors, especially contributing to the diagnosis of Alzheimer's disease.

摘要

阿尔茨海默病是一种老年神经退行性疾病,早期诊断有助于延缓疾病的进展。目前,可以通过脑电图分析获得脑功能疾病的特征,但脑电图特征与阿尔茨海默病的关系尚未明确阐明。在这项工作中,我们假设在疾病过程中存在默认的大脑变量(潜在因素),从大脑活动中解码潜在因素有助于研究认知障碍。为此,这项工作提出通过将 EEG 的潜在因素与变分自动编码器相结合来提取阿尔茨海默病的特征,以实现疾病识别。首先,研究了功率谱特征,发现两组的主导频率不同。进一步的分析表明,在θ频段,阿尔茨海默病的潜在因素分布与正常组存在明显差异。此外,将潜在因素投影到三维状态空间中,发现神经状态的瞬态旋转,这表明了潜在因素的动态特征。此外,采用 Takagi-Sugeno-Kang 分类器,并将多个潜在因素输入 Takagi-Sugeno-Kang 分类器进行解码。与线性分类器相比,Takagi-Sugeno-Kang 模糊分类器在对潜在因素子频带的能量特征进行分类时具有更好的性能。当使用四个频带的能量特征作为模型输入时,识别的准确率可达 98.10%。总的来说,这项工作从潜在因素的角度为神经功能障碍的识别提供了一种可行的工具,特别是有助于阿尔茨海默病的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验