文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化纳米颗粒诱导肿瘤相关巨噬细胞重极化和吞噬作用恢复以增强癌症免疫治疗。

Engineering nanoparticles-enabled tumor-associated macrophages repolarization and phagocytosis restoration for enhanced cancer immunotherapy.

机构信息

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

出版信息

J Nanobiotechnology. 2024 Jun 18;22(1):341. doi: 10.1186/s12951-024-02622-1.


DOI:10.1186/s12951-024-02622-1
PMID:38890636
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11184870/
Abstract

Tumor-associated macrophages (TAMs) are pivotal within the immunosuppressive tumor microenvironment (TME), and recently, have attracted intensive attention for cancer treatment. However, concurrently to promote TAMs repolarization and phagocytosis of cancer cells remains challenging. Here, a TAMs-targeted albumin nanoparticles-based delivery system (M@SINPs) was constructed for the co-delivery of photosensitizer IR820 and SHP2 inhibitor SHP099 to potentiate macrophage-mediated cancer immunotherapy. M@SINPs under laser irradiation can generate the intracellular reactive oxygen species (ROS) and facilitate M2-TAMs to an M1 phenotype. Meanwhile, inhibition of SHP2 could block the CD47-SIRPa pathway to restore M1 macrophage phagocytic activity. M@SINPs-mediated TAMs remodeling resulted in the immunostimulatory TME by repolarizing TAMs to an M1 phenotype, restoring its phagocytic function and facilitating intratumoral CTLs infiltration, which significantly inhibited tumor growth. Furthermore, M@SINPs in combination with anti-PD-1 antibody could also improve the treatment outcomes of PD-1 blockade and exert the synergistic anticancer effects. Thus, the macrophage repolarization/phagocytosis restoration combination through M@SINPs holds promise as a strategy to concurrently remodel TAMs in TME for improving the antitumor efficiency of immune checkpoint block and conventional therapy.

摘要

肿瘤相关巨噬细胞(TAMs)在免疫抑制性肿瘤微环境(TME)中起着关键作用,最近已成为癌症治疗的研究热点。然而,如何同时促进 TAMs 的重极化和对癌细胞的吞噬作用仍然具有挑战性。在这里,构建了一种基于肿瘤相关巨噬细胞靶向白蛋白纳米粒的递药系统(M@SINPs),用于共递送光敏剂 IR820 和 SHP2 抑制剂 SHP099,以增强巨噬细胞介导的癌症免疫治疗。在激光照射下,M@SINPs 可以产生细胞内活性氧(ROS),并促进 M2-TAMs 向 M1 表型转化。同时,抑制 SHP2 可以阻断 CD47-SIRPa 通路,恢复 M1 巨噬细胞的吞噬活性。M@SINPs 介导的 TAMs 重塑通过将 TAMs 重极化为 M1 表型,恢复其吞噬功能并促进肿瘤内 CTLs 的浸润,从而显著抑制肿瘤生长。此外,M@SINPs 联合抗 PD-1 抗体也可以改善 PD-1 阻断治疗的效果,发挥协同抗癌作用。因此,通过 M@SINPs 实现巨噬细胞重极化/吞噬功能恢复的联合策略有望成为一种同时重塑 TME 中 TAMs 的策略,以提高免疫检查点阻断和常规治疗的抗肿瘤效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/cc887a329cc2/12951_2024_2622_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/1aff25ed0df3/12951_2024_2622_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/b8555c474ad0/12951_2024_2622_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/87d486b4e4a0/12951_2024_2622_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/c1389c4fa823/12951_2024_2622_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/55346de26817/12951_2024_2622_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/cc887a329cc2/12951_2024_2622_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/1aff25ed0df3/12951_2024_2622_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/b8555c474ad0/12951_2024_2622_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/87d486b4e4a0/12951_2024_2622_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/c1389c4fa823/12951_2024_2622_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/55346de26817/12951_2024_2622_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5485/11184870/cc887a329cc2/12951_2024_2622_Fig5_HTML.jpg

相似文献

[1]
Engineering nanoparticles-enabled tumor-associated macrophages repolarization and phagocytosis restoration for enhanced cancer immunotherapy.

J Nanobiotechnology. 2024-6-18

[2]
A polymeric nanoplatform enhances the cGAS-STING pathway in macrophages to potentiate phagocytosis for cancer immunotherapy.

J Control Release. 2024-9

[3]
Construction of Hierarchically Biomimetic Iron Oxide Nanosystems for Macrophage Repolarization-Promoted Immune Checkpoint Blockade of Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2024-7-17

[4]
Tumor microenvironment-responsive macrophage-mediated immunotherapeutic drug delivery.

Acta Biomater. 2024-9-15

[5]
Targeted co-delivery of resiquimod and a SIRPα variant by liposomes to activate macrophage immune responses for tumor immunotherapy.

J Control Release. 2023-8

[6]
SHISA3 Reprograms Tumor-Associated Macrophages Toward an Antitumoral Phenotype and Enhances Cancer Immunotherapy.

Adv Sci (Weinh). 2024-9

[7]
Supermolecular nanovehicles co-delivering TLR7/8-agonist and anti-CD47 siRNA for enhanced tumor immunotherapy.

Int J Biol Macromol. 2023-11-1

[8]
Engineering macrophage membrane-camouflaged nanoplatforms with enhanced macrophage function for mediating sonodynamic therapy of ovarian cancer.

Nanoscale. 2024-10-17

[9]
Targeting tumor-associated macrophages with mannosylated nanotherapeutics delivering TLR7/8 agonist enhances cancer immunotherapy.

J Control Release. 2024-8

[10]
Hybrid Cellular Nanovesicles Block PD-L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy.

Small. 2024-8

引用本文的文献

[1]
Reprogramming Atherosclerosis: Precision Drug Delivery, Nanomedicine, and Immune-Targeted Therapies for Cardiovascular Risk Reduction.

Pharmaceutics. 2025-8-7

[2]
Unraveling the role of M2 TAMs in ovarian cancer dynamics: a systematic review.

J Transl Med. 2025-6-3

[3]
Manganese-based nanoparticles plus gambogic acid targeted hypoxic tumor microenvironment by enhancing ROS generation and provided antitumor treatment and improved immunotherapy.

RSC Adv. 2025-4-11

[4]
Bacterial-Mediated In Situ Engineering of Tumour-Associated Macrophages for Cancer Immunotherapy.

Cancers (Basel). 2025-2-20

[5]
Comment on "Role of CD47 Gene Expression in Colorectal Cancer: A Comprehensive Molecular Profiling Study".

J Immunother Cancer. 2025-2-11

[6]
Immunosenescence, Physical Exercise, and their Implications in Tumor Immunity and Immunotherapy.

Int J Biol Sci. 2025-1-6

[7]
Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools.

Int J Nanomedicine. 2024-12-19

本文引用的文献

[1]
Chimeric Peptide Engineered Bioregulator for Metastatic Tumor Immunotherapy through Macrophage Polarization and Phagocytosis Restoration.

ACS Nano. 2023-8-22

[2]
Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages.

Cancers (Basel). 2023-5-11

[3]
Emerging phagocytosis checkpoints in cancer immunotherapy.

Signal Transduct Target Ther. 2023-3-7

[4]
Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy.

Cytokine Growth Factor Rev. 2022-10

[5]
Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis.

Mol Pharm. 2022-5-2

[6]
Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment.

Nat Commun. 2022-4-6

[7]
Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy.

Int Immunopharmacol. 2022-2

[8]
Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.

Cancer Immunol Res. 2022-2

[9]
Nanomaterials targeting tumor associated macrophages for cancer immunotherapy.

J Control Release. 2022-1

[10]
Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization.

Nat Commun. 2021-11-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索