Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece.
NewDrug P.C., Patras Science Park, 26504 Patras, Greece.
Int J Mol Sci. 2024 May 31;25(11):6092. doi: 10.3390/ijms25116092.
We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35-55 (OM-MOG35-55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35-55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed different types of dendritic cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy controls presenting OM-MOG35-55 or MOG-35-55 to autologous T cells to investigate the tolerogenic potential of OM-MOG35-55 for its possible use in MS therapy. To this end, monocytes were differentiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in secreted cytokines, mainly due to increased TGF-β1 levels. The best tolerogenic effect was obtained when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35-55, resulting in the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ Τ cells. In conclusion, the tolerance induction protocols presented in this work demonstrate that OM-MOG35-55 could form the basis for the development of personalized therapeutic vaccines or immunomodulatory treatments for MS.
我们之前已经在体内(EAE 小鼠模型)和体外(人外周血)进行了氧化甘露聚糖偶联肽 MOG35-55(OM-MOG35-55)的临床前研究,并证明 OM-MOG35-55 抑制与自身免疫性脱髓鞘相关的抗原特异性 T 细胞反应。基于这些结果,我们从多发性硬化症(MS)患者或健康对照者的外周血单核细胞中开发了不同类型的树突状细胞(DC),将 OM-MOG35-55 或 MOG-35-55 呈递给自体 T 细胞,以研究 OM-MOG35-55 的耐受潜力,以便将其可能用于 MS 治疗。为此,单核细胞在 IL-4+GM-CSF±地塞米松(DEXA)±维生素 D3(VITD3)存在下分化为不同的 DC 类型。在分化结束时,将 DC 加载肽并与 T 细胞+IL-2 共培养 4 个抗原呈递周期。使用流式细胞术分析 DC 和 T 细胞群体的表型,并使用流式细胞术或 ELISA 分析分泌的细胞因子。在第 8 天,单核细胞已转化为表达成熟或不成熟表型典型标志物的 DC。与所有 DC 类型共培养 4 个抗原呈递周期后,与记忆 CD8+T 细胞相比,记忆 CD4+T 细胞增加,并且分泌的细胞因子发生抑制性转变,主要是由于 TGF-β1 水平增加。当患者 CD4+T 细胞与呈递 OM-MOG35-55 的 VITD3-DC 共培养时,获得了最佳的耐受诱导效果,导致最高水平的 CD4+PD-1+T 细胞和 CD4+CD25+Foxp3+T 细胞。总之,本工作中提出的诱导耐受方案表明,OM-MOG35-55 可能为开发针对多发性硬化症的个体化治疗性疫苗或免疫调节治疗奠定基础。