Chung Chih-Hung, Lin Chiung-Yuan, Liu Hsien-Yang, Nian Shao-En, Chen Yu-Tzu, Tsai Cheng-En
Department of Electronics and Electrical Engineering and Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
Materials (Basel). 2024 Jun 1;17(11):2665. doi: 10.3390/ma17112665.
2D field-effect transistors (FETs) fabricated with transition metal dichalcogenide (TMD) materials are a potential replacement for the silicon-based CMOS. However, the lack of advancement in p-type contact is also a key factor hindering TMD-based CMOS applications. The less investigated path towards improving electrical characteristics based on contact geometries with low contact resistance () has also been established. Moreover, finding contact metals to reduce the is indeed one of the significant challenges in achieving the above goal. Our research provides the first comparative analysis of the three contact configurations for a WSe monolayer with different noble metals (Rh, Ru, and Pd) by employing ab initio density functional theory (DFT) and non-equilibrium Green's function (NEGF) methods. From the perspective of the contact topologies, the and minimum subthreshold slope () of all the conventional edge contacts are outperformed by the novel non-van der Waals (vdW) sandwich contacts. These non-vdW sandwich contacts reveal that their values are below 50 Ω∙μm, attributed to the narrow Schottky barrier widths (SBWs) and low Schottky barrier heights (SBHs). Not only are the values dramatically reduced by such novel contacts, but the values are lower than 68 mV/dec. The new proposal offers the lowest and , irrespective of the contact metals. Further considering the metal leads, the WSe/Rh FETs based on the non-vdW sandwich contacts show a meager value of 33 Ω∙μm and an exceptional of 63 mV/dec. The two calculated results present the smallest-ever values reported in our study, indicating that the non-vdW sandwich contacts with Rh leads can attain the best-case scenario. In contrast, the symmetric convex edge contacts with Pd leads cause the worst-case degradation, yielding an value of 213 Ω∙μm and an value of 95 mV/dec. While all the WSe/Ru FETs exhibit medium performances, the minimal shift in the transfer curves is interestingly advantageous to the circuit operation. Conclusively, the low- performances and the desirable values are a combination of the contact geometries and metal leads. This innovation, achieved through noble metal leads in conjunction with the novel contact configurations, paves the way for a TMD-based CMOS with ultra-low and rapid switching speeds.
用过渡金属二硫属化物(TMD)材料制造的二维场效应晶体管(FET)是硅基互补金属氧化物半导体(CMOS)的潜在替代品。然而,p型接触缺乏进展也是阻碍基于TMD的CMOS应用的关键因素。基于具有低接触电阻()的接触几何形状来改善电学特性的较少被研究的途径也已确立。此外,找到能降低的接触金属确实是实现上述目标的重大挑战之一。我们的研究通过采用从头算密度泛函理论(DFT)和非平衡格林函数(NEGF)方法,首次对具有不同贵金属(铑、钌和钯)的WSe单分子层的三种接触配置进行了比较分析。从接触拓扑结构的角度来看,所有传统边缘接触的和最小亚阈值斜率()都优于新型非范德华(vdW)夹心接触。这些非vdW夹心接触表明,它们的值低于50Ω∙μm,这归因于狭窄的肖特基势垒宽度(SBW)和低肖特基势垒高度(SBH)。这种新型接触不仅使值大幅降低,而且值低于68mV/dec。无论接触金属如何,新方案都提供了最低的和。进一步考虑金属引线,基于非vdW夹心接触的WSe/铑FET显示出仅33Ω∙μm的低值和63mV/dec的优异值。这两个计算结果呈现出我们研究中报道的有史以来最小的值,表明带有铑引线的非vdW夹心接触可以实现最佳情况。相比之下,带有钯引线的对称凸边缘接触导致最坏情况的退化,产生213Ω∙μm的值和95mV/dec的值。虽然所有的WSe/钌FET都表现出中等性能,但转移曲线中最小的偏移有趣地有利于电路操作。总之,低性能和理想的值是接触几何形状和金属引线的结合。通过贵金属引线与新型接触配置相结合实现的这一创新,为具有超低和快速开关速度的基于TMD的CMOS铺平了道路。