Suppr超能文献

脑电图信号特征提取应用的趋势。

Trends in EEG signal feature extraction applications.

作者信息

Singh Anupreet Kaur, Krishnan Sridhar

机构信息

Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada.

出版信息

Front Artif Intell. 2023 Jan 25;5:1072801. doi: 10.3389/frai.2022.1072801. eCollection 2022.

Abstract

This paper will focus on electroencephalogram (EEG) signal analysis with an emphasis on common feature extraction techniques mentioned in the research literature, as well as a variety of applications that this can be applied to. In this review, we cover single and multi-dimensional EEG signal processing and feature extraction techniques in the time domain, frequency domain, decomposition domain, time-frequency domain, and spatial domain. We also provide pseudocode for the methods discussed so that they can be replicated by practitioners and researchers in their specific areas of biomedical work. Furthermore, we discuss artificial intelligence applications such as assistive technology, neurological disease classification, brain-computer interface systems, as well as their machine learning integration counterparts, to complete the overall pipeline design for EEG signal analysis. Finally, we discuss future work that can be innovated in the feature extraction domain for EEG signal analysis.

摘要

本文将聚焦于脑电图(EEG)信号分析,重点介绍研究文献中提及的常见特征提取技术,以及其可应用的各种领域。在本综述中,我们涵盖了时域、频域、分解域、时频域和空间域中的单维和多维EEG信号处理及特征提取技术。我们还为所讨论的方法提供了伪代码,以便生物医学工作特定领域的从业者和研究人员能够进行复制。此外,我们讨论了人工智能应用,如辅助技术、神经疾病分类、脑机接口系统,以及它们的机器学习集成对应物,以完成EEG信号分析的整体流程设计。最后,我们讨论了EEG信号分析特征提取领域中可以创新的未来工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f000/9905640/2f124b4f1c7e/frai-05-1072801-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验