文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 X 射线图像的卷积神经网络颈椎病诊断。

Cervical Spondylosis Diagnosis Based on Convolutional Neural Network with X-ray Images.

机构信息

Department of Medical Imaging, China Rehabilitation Research Center and Capital Medical University School of Rehabilitation Medicine, Beijing 100068, China.

Department of Electronics Design, Mid Sweden University, 85170 Sundsvall, Sweden.

出版信息

Sensors (Basel). 2024 May 26;24(11):3428. doi: 10.3390/s24113428.


DOI:10.3390/s24113428
PMID:38894217
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11174662/
Abstract

The increase in Cervical Spondylosis cases and the expansion of the affected demographic to younger patients have escalated the demand for X-ray screening. Challenges include variability in imaging technology, differences in equipment specifications, and the diverse experience levels of clinicians, which collectively hinder diagnostic accuracy. In response, a deep learning approach utilizing a ResNet-34 convolutional neural network has been developed. This model, trained on a comprehensive dataset of 1235 cervical spine X-ray images representing a wide range of projection angles, aims to mitigate these issues by providing a robust tool for diagnosis. Validation of the model was performed on an independent set of 136 X-ray images, also varied in projection angles, to ensure its efficacy across diverse clinical scenarios. The model achieved a classification accuracy of 89.7%, significantly outperforming the traditional manual diagnostic approach, which has an accuracy of 68.3%. This advancement demonstrates the viability of deep learning models to not only complement but enhance the diagnostic capabilities of clinicians in identifying Cervical Spondylosis, offering a promising avenue for improving diagnostic accuracy and efficiency in clinical settings.

摘要

颈椎病病例的增加和受影响人群向年轻患者的扩展,使得 X 光筛查的需求不断增加。挑战包括成像技术的可变性、设备规格的差异,以及临床医生经验水平的不同,这些因素共同影响了诊断的准确性。针对这些问题,我们开发了一种基于 ResNet-34 卷积神经网络的深度学习方法。该模型在一个包含 1235 张颈椎 X 光图像的综合数据集上进行了训练,这些图像涵盖了广泛的投影角度,旨在通过提供一个强大的诊断工具来解决这些问题。我们在一个独立的 136 张 X 光图像数据集上对该模型进行了验证,这些图像的投影角度也各不相同,以确保其在不同临床场景下的有效性。该模型的分类准确率达到了 89.7%,明显优于传统的手动诊断方法(准确率为 68.3%)。这一进展表明,深度学习模型不仅可以补充,而且可以增强临床医生识别颈椎病的诊断能力,为提高临床诊断的准确性和效率提供了一个很有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/5cc3d811cf9d/sensors-24-03428-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/efac9b4c8a9b/sensors-24-03428-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/d7489c8f405b/sensors-24-03428-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/111753373157/sensors-24-03428-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/858fe40e1667/sensors-24-03428-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/aaf369c0adb0/sensors-24-03428-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/5cc3d811cf9d/sensors-24-03428-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/efac9b4c8a9b/sensors-24-03428-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/d7489c8f405b/sensors-24-03428-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/111753373157/sensors-24-03428-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/858fe40e1667/sensors-24-03428-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/aaf369c0adb0/sensors-24-03428-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/11174662/5cc3d811cf9d/sensors-24-03428-g006.jpg

相似文献

[1]
Cervical Spondylosis Diagnosis Based on Convolutional Neural Network with X-ray Images.

Sensors (Basel). 2024-5-26

[2]
Aided diagnosis of cervical spondylotic myelopathy using deep learning methods based on electroencephalography.

Med Eng Phys. 2023-11

[3]
AI-driven deep convolutional neural networks for chest X-ray pathology identification.

J Xray Sci Technol. 2022

[4]
Application of Imaging Examination Based on Deep Learning in the Diagnosis of Viral Senile Pneumonia.

Contrast Media Mol Imaging. 2022

[5]
Automated detection of cervical ossification of the posterior longitudinal ligament in plain lateral radiographs of the cervical spine using a convolutional neural network.

Sci Rep. 2021-6-16

[6]
Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph.

BMC Neurol. 2022-4-20

[7]
Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network.

Comput Methods Programs Biomed. 2020-2

[8]
A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network.

Tissue Cell. 2020-8

[9]
Development and multi-institutional validation of a convolutional neural network to detect vertebral body mis-alignments in 2D x-ray setup images.

Med Phys. 2023-5

[10]
CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization.

Comput Biol Med. 2020-6-20

引用本文的文献

[1]
MRI-Based Machine Learning and Radiomics Methods for Assessing Spinal Cord Function in Patients with Mild Cervical Spondylotic Myelopathy.

Bioengineering (Basel). 2025-6-17

[2]
DAEiS-Net: Deep Aggregation Network with Edge Information Supplement for Tunnel Water Stain Segmentation.

Sensors (Basel). 2024-8-23

本文引用的文献

[1]
Prediction of benign and malignant ovarian tumors using Resnet34 on ultrasound images.

J Obstet Gynaecol Res. 2023-12

[2]
The imaging of cervical spondylotic myeloradiculopathy.

Skeletal Radiol. 2023-12

[3]
Deep convolutional neural network-the evaluation of cervical vertebrae maturation.

Oral Radiol. 2023-10

[4]
Human-computer interaction based health diagnostics using ResNet34 for tongue image classification.

Comput Methods Programs Biomed. 2022-11

[5]
Development of artificial intelligence for automated measurement of cervical lordosis on lateral radiographs.

Sci Rep. 2022-9-21

[6]
Computerized-Assisted Scoliosis Diagnosis Based on Faster R-CNN and ResNet for the Classification of Spine X-Ray Images.

Comput Math Methods Med. 2022

[7]
Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph.

BMC Neurol. 2022-4-20

[8]
Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods.

Jt Dis Relat Surg. 2022

[9]
Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis.

Comput Biol Med. 2022-5

[10]
A deep learning algorithm to identify cervical ossification of posterior longitudinal ligaments on radiography.

Sci Rep. 2022-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索