Wang Bin, Redondo Edurne, Le Fevre Lewis W, Brookfield Adam, McInnes Eric J L, Dryfe Robert A W
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
J Phys Chem C Nanomater Interfaces. 2025 Apr 11;129(16):7667-7676. doi: 10.1021/acs.jpcc.5c00275. eCollection 2025 Apr 24.
The rapid voltage and capacity fade of the otherwise promising Ni-rich layered LiNiMnCoO (NMC811) cathode are the primary obstacles to its successful commercialization in lithium-ion batteries (LIBs). Here, electrochemical electron paramagnetic resonance (EPR) spectroscopy is employed to gain insight into the cation redox behavior of the NMC811 cathode during the cell charge/discharge process. Different oxidation states of Ni ions are detected by variations in the signal of the EPR spectra. studies of NMC811 at different SOC levels also confirm changes in the local Mn-Ni environment. A comparison of studies on fresh and cycled NMC811 electrodes demonstrates that the fundamental redox processes remain unchanged upon cycling of the material. Finally, dissolved Mn and Co ions from the bulk are found using EPR characterization of the cycled cathode and separator. The dissolution of these metal ions can accelerate the degradation of the entire battery.
尽管富镍层状LiNiMnCoO(NMC811)阴极前景广阔,但其快速的电压衰减和容量衰减是其在锂离子电池(LIB)中成功商业化的主要障碍。在此,采用电化学电子顺磁共振(EPR)光谱来深入了解NMC811阴极在电池充/放电过程中的阳离子氧化还原行为。通过EPR光谱信号的变化检测到Ni离子的不同氧化态。对不同荷电状态(SOC)水平下的NMC811的研究也证实了局部Mn-Ni环境的变化。对新鲜和循环后的NMC811电极的研究比较表明,材料循环后基本的氧化还原过程保持不变。最后,通过对循环后的阴极和隔膜进行EPR表征,发现了大量溶解的Mn和Co离子。这些金属离子的溶解会加速整个电池的降解。