Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
Adv Mater. 2024 Aug;36(35):e2404428. doi: 10.1002/adma.202404428. Epub 2024 Jul 3.
Despite of the substantial potential of human-derived retinal organoids, the degeneration of retinal ganglion cells (RGCs) during maturation limits their utility in assessing the functionality of later-born retinal cell subtypes. Additionally, conventional analyses primarily rely on fluorescent emissions, which limits the detection of actual cell functionality while risking damage to the 3D cytoarchitecture of organoids. Here, an electrophysiological analysis is presented to monitor RGC development in early to mid-stage retinal organoids, and compare distinct features with fully-mature mouse retina. This approach utilizes high-resolution 3D printing of liquid-metal microelectrodes, enabling precise targeting of specific inner retinal layers within organoids. The adaptable distribution and softness of these microelectrodes facilitate the spatiotemporal recording of inner retinal signals. This study not only demonstrates the functional properties of RGCs in retinal organoid development but also provides insights into their synaptic connectivity, reminiscent of fetal native retinas. Further comparison with fully-mature mouse retina in vivo verifies the organoid features, highlighting the potential of early-stage retinal organoids in biomedical research.
尽管人源性视网膜类器官具有巨大的潜力,但在成熟过程中视网膜神经节细胞(RGCs)的退化限制了它们在评估后生视网膜细胞亚型功能中的应用。此外,传统分析主要依赖荧光发射,这限制了对实际细胞功能的检测,同时有损坏类器官 3D 细胞结构的风险。在这里,提出了一种电生理分析方法来监测早期至中期视网膜类器官中 RGC 的发育,并将其与完全成熟的小鼠视网膜进行比较。该方法利用液态金属微电极的高分辨率 3D 打印,实现了对类器官内特定内视网膜层的精确靶向。这些微电极的适应性分布和柔软性有利于内视网膜信号的时空记录。这项研究不仅展示了 RGC 在视网膜类器官发育中的功能特性,还揭示了它们的突触连接,类似于胎儿天然视网膜。与体内完全成熟的小鼠视网膜进一步比较验证了类器官的特征,突出了早期视网膜类器官在生物医学研究中的潜力。