文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

丛枝菌根真菌相互作用在易侵蚀生态系统中架起了根际微生物群对坡面多功能性支持的桥梁。

Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem.

作者信息

Qiu Tianyi, Peñuelas Josep, Chen Yinglong, Sardans Jordi, Yu Jialuo, Xu Zhiyuan, Cui Qingliang, Liu Ji, Cui Yongxing, Zhao Shuling, Chen Jing, Wang Yunqiang, Fang Linchuan

机构信息

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau Northwest A&F University Yangling China.

College of Natural Resources and Environment Northwest A&F University Yangling China.

出版信息

Imeta. 2024 Mar 25;3(3):e187. doi: 10.1002/imt2.187. eCollection 2024 Jun.


DOI:10.1002/imt2.187
PMID:38898982
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11183171/
Abstract

The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by , assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among , AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.

摘要

不同土壤微生物群落在恢复侵蚀导致的退化土地方面的作用已得到充分认可。然而,共生丛枝菌根(AM)真菌、根瘤菌和异养细菌之间的促进性相互作用,这些相互作用支撑着侵蚀生态系统中的多种功能,仍然不清楚。在这里,我们利用定量微生物群分析和生态网络分析,来探究黄土高原一个种植园侵蚀坡面上根际微生物群的多样性和生物关联与多功能性之间的相互作用。我们发现不同坡位的坡面多功能性存在明显差异,这与包括土壤磷(P)和水分在内的限制资源的变化有关。为了应对磷限制,AM真菌被招募,在跨界网络中作为关键物种和连接者发挥关键作用。此外,AM真菌促进了细菌和根瘤菌群落的组装和组成,共同推动坡面多功能性。AM真菌、根瘤菌之间的共生关系通过增强难降解化合物的分解、提高磷矿化潜力和优化微生物代谢,促进了坡面多功能性。总体而言,我们的研究结果突出了与根系相关的以AM真菌为中心的微生物群落在侵蚀景观功能实现中的关键作用,为易侵蚀地区退化生态系统的可持续恢复提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/eabb57ee686a/IMT2-3-e187-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/517abfa0bd86/IMT2-3-e187-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/89ae98368c7e/IMT2-3-e187-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/83cfa9241e29/IMT2-3-e187-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/caa9b3f7ea8d/IMT2-3-e187-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/5f265a515683/IMT2-3-e187-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/eabb57ee686a/IMT2-3-e187-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/517abfa0bd86/IMT2-3-e187-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/89ae98368c7e/IMT2-3-e187-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/83cfa9241e29/IMT2-3-e187-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/caa9b3f7ea8d/IMT2-3-e187-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/5f265a515683/IMT2-3-e187-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4b/11183171/eabb57ee686a/IMT2-3-e187-g006.jpg

相似文献

[1]
Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem.

Imeta. 2024-3-25

[2]
Broad environmental adaptation of abundant microbial taxa in Robinia pseudoacacia forests during long-term vegetation restoration.

Environ Res. 2024-2-1

[3]
Changes in arbuscular mycorrhizal fungal attributes along a chronosequence of black locust (Robinia pseudoacacia) plantations can be attributed to the plantation-induced variation in soil properties.

Sci Total Environ. 2017-5-4

[4]
Enhanced soil function and health by soybean root microbial communities during remediation of Cd-contaminated soil with the application of soil amendments.

mSystems. 2023-6-29

[5]
Symbiosis Genes Impact Microbial Interactions between Symbionts and Multikingdom Commensal Communities.

mBio. 2019-10-8

[6]
Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

PLoS One. 2016-4-11

[7]
[Potential of Arbuscular Mycorrhizal Fungi, Biochar, and Combined Amendment on Sandy Soil Improvement Driven by Microbial Community].

Huan Jing Ke Xue. 2021-4-8

[8]
Geographical, climatic, and soil factors control the altitudinal pattern of rhizosphere microbial diversity and its driving effect on root zone soil multifunctionality in mountain ecosystems.

Sci Total Environ. 2023-12-15

[9]
Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China.

Mycorrhiza. 2017-4

[10]
Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis.

Mol Plant. 2021-3-1

引用本文的文献

[1]
Nitrogen addition alters arbuscular mycorrhizal fungi and soil bacteria networks without promoting phosphorus mineralization in a semiarid grassland.

Commun Biol. 2025-8-15

[2]
Key microbial taxa play essential roles in maintaining soil muti-nutrient cycling following an extreme drought event in ecological buffer zones along the Yangtze River.

Front Plant Sci. 2024-9-4

[3]
Harnessing chickpea bacterial endophytes for improved plant health and fitness.

AIMS Microbiol. 2024-7-8

[4]
Widely Targeted Metabolomic Analysis Reveals the Improvement in Triterpenoids Triggered by Arbuscular Mycorrhizal Fungi via UPLC-ESI-MS/MS.

Molecules. 2024-7-8

本文引用的文献

[1]
: A method for quantifying putative biotic associations of microbes at the community level.

Imeta. 2023-2-16

[2]
Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem.

Imeta. 2022-8-15

[3]
Linking soil fungi to bacterial community assembly in arid ecosystems.

Imeta. 2022-2-24

[4]
Changes in structure and assembly of a species-rich soil natural community with contrasting nutrient availability upon establishment of a plant-beneficial Pseudomonas in the wheat rhizosphere.

Microbiome. 2023-9-29

[5]
Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality.

Sci Total Environ. 2023-6-20

[6]
Forest microbiome and global change.

Nat Rev Microbiol. 2023-8

[7]
Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems.

Annu Rev Plant Biol. 2023-5-22

[8]
Species of fast bulk-soil nutrient cycling have lower rhizosphere effects: A nutrient spectrum of rhizosphere effects.

Ecology. 2023-4

[9]
An amplification-selection model for quantified rhizosphere microbiota assembly.

Sci Bull (Beijing). 2020-6-30

[10]
Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces.

Nat Ecol Evol. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索