Jeong Won Joon, Wang Congcheng, Yoon Sun Geun, Liu Yuhgene, Chen Timothy, McDowell Matthew T
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Energy Lett. 2024 May 8;9(6):2554-2563. doi: 10.1021/acsenergylett.4c00915. eCollection 2024 Jun 14.
Lithium alloy anodes in the form of dense foils offer significant potential advantages over lithium metal and particulate alloy anodes for solid-state batteries (SSBs). However, the reaction and degradation mechanisms of dense alloy anodes remain largely unexplored. Here, we investigate the electrochemical lithiation/delithiation behavior of 12 elemental alloy anodes in SSBs with LiPSCl solid-state electrolyte (SSE), enabling direct behavioral comparisons. The materials show highly divergent first-cycle Coulombic efficiency, ranging from 99.3% for indium to ∼20% for antimony. Through microstructural imaging and electrochemical testing, we identify lithium trapping within the foil during delithiation as the principal reason for low Coulombic efficiency in most materials. The exceptional Coulombic efficiency of indium is found to be due to unique delithiation reaction front morphology evolution in which the high-diffusivity LiIn phase remains at the SSE interface. This study links composition to reaction behavior for alloy anodes and thus provides guidance toward better SSBs.
致密箔形式的锂合金阳极相对于固态电池(SSB)的锂金属和颗粒合金阳极具有显著的潜在优势。然而,致密合金阳极的反应和降解机制在很大程度上仍未得到探索。在此,我们研究了12种元素合金阳极在含有LiPSCl固态电解质(SSE)的固态电池中的电化学锂化/脱锂行为,从而能够进行直接的行为比较。这些材料的首次循环库仑效率差异很大,从铟的99.3%到锑的约20%不等。通过微观结构成像和电化学测试,我们确定在脱锂过程中锂在箔内的捕获是大多数材料库仑效率低的主要原因。发现铟的优异库仑效率是由于独特的脱锂反应前沿形态演变,其中高扩散率的LiIn相保留在固态电解质界面处。这项研究将成分与合金阳极的反应行为联系起来,从而为更好的固态电池提供了指导。