Siniscalchi Marco, Liu Junliang, Gibson Joshua S, Turrell Stephen J, Aspinall Jack, Weatherup Robert S, Pasta Mauro, Speller Susannah C, Grovenor Chris R M
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
The Faraday Institution, Didcot OX11 0RA, U.K.
ACS Energy Lett. 2022 Oct 14;7(10):3593-3599. doi: 10.1021/acsenergylett.2c01793. Epub 2022 Sep 27.
Lithium metal self-diffusion is too slow to sustain large current densities at the interface with a solid electrolyte, and the resulting formation of voids on stripping is a major limiting factor for the power density of solid-state cells. The enhanced morphological stability of some lithium alloy electrodes has prompted questions on the role of lithium diffusivity in these materials. Here, the lithium diffusivity in Li-Mg alloys is investigated by an isotope tracer method, revealing that the presence of magnesium slows down the diffusion of lithium. For large stripping currents the delithiation process is diffusion-limited, hence a lithium metal electrode yields a larger capacity than a Li-Mg electrode. However, at lower currents we explain the apparent contradiction that more lithium can be extracted from Li-Mg electrodes by showing that the alloy can maintain a more geometrically stable diffusion path to the solid electrolyte surface so that the effective lithium diffusivity is improved.
锂金属自扩散速度过慢,无法在与固体电解质的界面维持大电流密度,并且在脱嵌时形成的空隙是固态电池功率密度的主要限制因素。一些锂合金电极增强的形态稳定性引发了关于锂扩散率在这些材料中作用的问题。在此,通过同位素示踪法研究了锂在锂 - 镁合金中的扩散率,结果表明镁的存在减缓了锂的扩散。对于大脱嵌电流,脱锂过程受扩散限制,因此锂金属电极比锂 - 镁电极具有更大的容量。然而,在较低电流下,我们通过表明该合金可以维持到固体电解质表面的更几何稳定的扩散路径,从而提高有效锂扩散率,解释了从锂 - 镁电极中可以提取更多锂这一明显矛盾现象。