Suppr超能文献

基于放射组学的混合模型预测放射性肺炎:系统评价和荟萃分析。

Radiomics-based hybrid model for predicting radiation pneumonitis: A systematic review and meta-analysis.

机构信息

Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, South Korea.

Research Institute, Oncosoft Inc., Seoul, South Korea.

出版信息

Phys Med. 2024 Jul;123:103414. doi: 10.1016/j.ejmp.2024.103414. Epub 2024 Jun 20.

Abstract

PURPOSE

This study reviewed and meta-analyzed evidence on radiomics-based hybrid models for predicting radiation pneumonitis (RP). These models are crucial for improving thoracic radiotherapy plans and mitigating RP, a common complication of thoracic radiotherapy. We examined and compared the RP prediction models developed in these studies with the radiomics features employed in RP models.

METHODS

We systematically searched Google Scholar, Embase, PubMed, and MEDLINE for studies published up to April 19, 2024. Sixteen studies met the inclusion criteria. We compared the RP prediction models developed in these studies and the radiomics features employed.

RESULTS

Radiomics, as a single-factor evaluation, achieved an area under the receiver operating characteristic curve (AUROC) of 0.73, accuracy of 0.69, sensitivity of 0.64, and specificity of 0.74. Dosiomics achieved an AUROC of 0.70. Clinical and dosimetric factors showed lower performance, with AUROCs of 0.59 and 0.58. Combining clinical and radiomic factors yielded an AUROC of 0.78, while combining dosiomic and radiomics factors produced an AUROC of 0.81. Triple combinations, including clinical, dosimetric, and radiomics factors, achieved an AUROC of 0.81. The study identifies key radiomics features, such as the Gray Level Co-occurrence Matrix (GLCM) and Gray Level Size Zone Matrix (GLSZM), which enhance the predictive accuracy of RP models.

CONCLUSIONS

Radiomics-based hybrid models are highly effective in predicting RP. These models, combining traditional predictive factors with radiomic features, particularly GLCM and GLSZM, offer a clinically feasible approach for identifying patients at higher RP risk. This approach enhances clinical outcomes and improves patient quality of life.

PROTOCOL REGISTRATION

The protocol of this study was registered on PROSPERO (CRD42023426565).

摘要

目的

本研究回顾和荟萃分析了基于放射组学的混合模型在预测放射性肺炎(RP)中的证据。这些模型对于改进胸部放射治疗计划和减轻 RP(胸部放射治疗的常见并发症)至关重要。我们检查并比较了这些研究中开发的 RP 预测模型与 RP 模型中使用的放射组学特征。

方法

我们系统地在 Google Scholar、Embase、PubMed 和 MEDLINE 上搜索了截至 2024 年 4 月 19 日发表的研究。有 16 项研究符合纳入标准。我们比较了这些研究中开发的 RP 预测模型和使用的放射组学特征。

结果

放射组学作为单因素评估,其受试者工作特征曲线下面积(AUROC)为 0.73,准确性为 0.69,敏感性为 0.64,特异性为 0.74。Dosiomics 的 AUROC 为 0.70。临床和剂量学因素的性能较低,AUROC 分别为 0.59 和 0.58。将临床和放射组学因素相结合得到的 AUROC 为 0.78,而将 dosiomic 和放射组学因素相结合得到的 AUROC 为 0.81。包括临床、剂量学和放射组学因素的三重组合的 AUROC 为 0.81。该研究确定了关键的放射组学特征,如灰度共生矩阵(GLCM)和灰度大小区域矩阵(GLSZM),这些特征提高了 RP 模型的预测准确性。

结论

基于放射组学的混合模型在预测 RP 方面非常有效。这些模型将传统预测因素与放射组学特征(特别是 GLCM 和 GLSZM)相结合,为识别 RP 风险较高的患者提供了一种临床可行的方法。这种方法提高了临床结果,改善了患者的生活质量。

注册

本研究的方案在 PROSPERO(CRD42023426565)上进行了注册。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验