Suppr超能文献

RNA-Seq 数据分析。

RNA-Seq Data Analysis.

机构信息

Genomics & Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.

出版信息

Methods Mol Biol. 2024;2822:263-290. doi: 10.1007/978-1-0716-3918-4_18.

Abstract

RNA-Seq data analysis stands as a vital part of genomics research, turning vast and complex datasets into meaningful biological insights. It is a field marked by rapid evolution and ongoing innovation, necessitating a thorough understanding for anyone seeking to unlock the potential of RNA-Seq data. In this chapter, we describe the intricate landscape of RNA-seq data analysis, elucidating a comprehensive pipeline that navigates through the entirety of this complex process. Beginning with quality control, the chapter underscores the paramount importance of ensuring the integrity of RNA-seq data, as it lays the groundwork for subsequent analyses. Preprocessing is then addressed, where the raw sequence data undergoes necessary modifications and enhancements, setting the stage for the alignment phase. This phase involves mapping the processed sequences to a reference genome, a step pivotal for decoding the origins and functions of these sequences.Venturing into the heart of RNA-seq analysis, the chapter then explores differential expression analysis-the process of identifying genes that exhibit varying expression levels across different conditions or sample groups. Recognizing the biological context of these differentially expressed genes is pivotal; hence, the chapter transitions into functional analysis. Here, methods and tools like Gene Ontology and pathway analyses help contextualize the roles and interactions of the identified genes within broader biological frameworks. However, the chapter does not stop at conventional analysis methods. Embracing the evolving paradigms of data science, it delves into machine learning applications for RNA-seq data, introducing advanced techniques in dimension reduction and both unsupervised and supervised learning. These approaches allow for patterns and relationships to be discerned in the data that might be imperceptible through traditional methods.

摘要

RNA-Seq 数据分析是基因组学研究的重要组成部分,它将庞大而复杂的数据集转化为有意义的生物学见解。这是一个快速发展和不断创新的领域,任何希望挖掘 RNA-Seq 数据潜力的人都需要对其有深入的了解。在本章中,我们描述了 RNA-seq 数据分析的复杂领域,阐明了一个全面的分析流程,涵盖了这个复杂过程的各个方面。

从质量控制开始,本章强调了确保 RNA-seq 数据完整性的至关重要性,因为它为后续分析奠定了基础。然后处理预处理,对原始序列数据进行必要的修改和增强,为对齐阶段做好准备。在对齐阶段,将处理后的序列映射到参考基因组,这是解码这些序列的来源和功能的关键步骤。

接下来,我们深入探讨 RNA-seq 分析的核心,即差异表达分析——识别在不同条件或样本组中表达水平不同的基因的过程。识别这些差异表达基因的生物学背景至关重要;因此,本章进入功能分析。在此,方法和工具,如基因本体论和途径分析,有助于在更广泛的生物学框架内理解鉴定基因的作用和相互作用。

然而,本章并不仅限于传统的分析方法。我们还介绍了 RNA-seq 数据的机器学习应用,包括降维和无监督学习和监督学习等先进技术。这些方法允许在数据中发现传统方法可能无法察觉的模式和关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验