Suppr超能文献

MMGPL:基于图提示学习的多模态医学数据分析。

MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning.

机构信息

Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Med Image Anal. 2024 Oct;97:103225. doi: 10.1016/j.media.2024.103225. Epub 2024 May 28.

Abstract

Prompt learning has demonstrated impressive efficacy in the fine-tuning of multimodal large models to a wide range of downstream tasks. Nonetheless, applying existing prompt learning methods for the diagnosis of neurological disorder still suffers from two issues: (i) existing methods typically treat all patches equally, despite the fact that only a small number of patches in neuroimaging are relevant to the disease, and (ii) they ignore the structural information inherent in the brain connection network which is crucial for understanding and diagnosing neurological disorders. To tackle these issues, we introduce a novel prompt learning model by learning graph prompts during the fine-tuning process of multimodal models for diagnosing neurological disorders. Specifically, we first leverage GPT-4 to obtain relevant disease concepts and compute semantic similarity between these concepts and all patches. Secondly, we reduce the weight of irrelevant patches according to the semantic similarity between each patch and disease-related concepts. Moreover, we construct a graph among tokens based on these concepts and employ a graph convolutional network layer to extract the structural information of the graph, which is used to prompt the pre-trained multimodal models for diagnosing neurological disorders. Extensive experiments demonstrate that our method achieves superior performance for neurological disorder diagnosis compared with state-of-the-art methods and validated by clinicians.

摘要

提示学习在微调多模态大型模型以适应广泛的下游任务方面表现出了令人印象深刻的效果。尽管如此,将现有的提示学习方法应用于神经障碍的诊断仍然存在两个问题:(i) 现有方法通常平等对待所有的斑块,尽管在神经影像学中只有少数斑块与疾病有关,(ii) 它们忽略了大脑连接网络中固有的结构信息,而这些信息对于理解和诊断神经障碍至关重要。为了解决这些问题,我们在对多模态模型进行神经障碍诊断的微调过程中,通过学习图提示,引入了一种新的提示学习模型。具体来说,我们首先利用 GPT-4 来获取相关的疾病概念,并计算这些概念与所有斑块之间的语义相似度。其次,我们根据每个斑块与疾病相关概念之间的语义相似度,降低不相关斑块的权重。此外,我们基于这些概念在标记之间构建一个图,并使用图卷积网络层来提取图的结构信息,该信息用于提示预训练的多模态模型进行神经障碍诊断。大量实验表明,与最先进的方法相比,我们的方法在神经障碍诊断方面取得了优越的性能,并得到了临床医生的验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验