Guo Chongxiao, Song Jian, Ni Jiamiao, Liu Yue, Fan Tongxiang
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Materials (Basel). 2024 Jun 19;17(12):2999. doi: 10.3390/ma17122999.
High-radio-frequency (RF) conductivity is required in advanced electronic materials to reduce the electromagnetic loss and power dissipation of electronic devices. Graphene/copper (Gr/Cu) multilayers possess higher conductivity than silver under direct current conditions. However, their RF conductivity and detailed mechanisms have rarely been evaluated at the micro scale. In this work, the RF conductivity of copper-copper (P-Cu), monolayer-graphene/copper (S-Gr/Cu), and multilayer-graphene/copper (M-Gr/Cu) multilayer structures were evaluated using scanning microwave impedance microscopy (SMIM) and dielectric resonator technique. The results indicated that the order of RF conductivity was M-Gr/Cu < P-Cu < S-Gr/Cu at 3 GHz, contrasting with P-Cu < M-Gr/Cu < S-Gr/Cu at DC condition. Meanwhile, the same trend of M-Gr/Cu < P-Cu < S-Gr/Cu was also observed using the dielectric resonator technique. Based on the conductivity-related Drude model and scattering theory, we believe that the microwave radiation can induce a thermal effect at S-Gr/Cu interfaces, leading to an increasing carrier concentration in S-Gr. In contrast, the intrinsic defects in M-Gr introduce additional carrier scattering, thereby reducing the RF conductivity in M-Gr/Cu. Our research offers a practical foundation for investigating conductive materials under RF conditions.
先进电子材料需要高射频(RF)电导率以降低电子设备的电磁损耗和功耗。在直流条件下,石墨烯/铜(Gr/Cu)多层膜的电导率高于银。然而,它们的射频电导率及其详细机制在微观尺度上很少被评估。在这项工作中,使用扫描微波阻抗显微镜(SMIM)和介质谐振器技术评估了铜-铜(P-Cu)、单层石墨烯/铜(S-Gr/Cu)和多层石墨烯/铜(M-Gr/Cu)多层结构的射频电导率。结果表明,在3 GHz时,射频电导率的顺序为M-Gr/Cu < P-Cu < S-Gr/Cu,这与直流条件下的P-Cu < M-Gr/Cu < S-Gr/Cu相反。同时,使用介质谐振器技术也观察到了M-Gr/Cu < P-Cu < S-Gr/Cu的相同趋势。基于与电导率相关的德鲁德模型和散射理论,我们认为微波辐射可以在S-Gr/Cu界面处引起热效应,导致S-Gr中载流子浓度增加。相比之下,M-Gr中的固有缺陷会引入额外载流子散射,从而降低M-Gr/Cu中的射频电导率。我们的研究为研究射频条件下的导电材料提供了实际基础。