文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

负载银纳米颗粒的壳聚糖/聚己内酯纳米纤维膜的抗菌潜力及生物相容性

Antibacterial Potential and Biocompatibility of Chitosan/Polycaprolactone Nanofibrous Membranes Incorporated with Silver Nanoparticles.

作者信息

Korniienko Viktoriia, Husak Yevgeniia, Diedkova Kateryna, Varava Yuliia, Grebnevs Vladlens, Pogorielova Oksana, Bērtiņš Māris, Korniienko Valeriia, Zandersone Baiba, Ramanaviciene Almira, Ramanavicius Arunas, Pogorielov Maksym

机构信息

Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia.

Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine.

出版信息

Polymers (Basel). 2024 Jun 18;16(12):1729. doi: 10.3390/polym16121729.


DOI:10.3390/polym16121729
PMID:38932079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11207988/
Abstract

This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan-a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties-emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering.

摘要

本研究旨在满足对电纺膜增强抗菌性能的需求,无论是通过表面改性还是加入抗菌剂,这对改善临床结果至关重要。在这种背景下,壳聚糖——一种因其生物相容性和模仿细胞外基质特性而备受赞誉的生物聚合物——成为组织再生的优秀候选材料。然而,通过静电纺丝制备壳聚糖纳米纤维往往对其结构完整性的保持构成挑战。本研究创新性地采用逐层静电纺丝技术,开发出一种壳聚糖/聚己内酯(CH/PCL)复合纳米纤维膜,并通过湿化学法合成的银纳米颗粒(AgNPs)对其进行增强。评估了电纺壳聚糖膜的抗菌效果、粘附性能和细胞毒性,同时使用扫描电子显微镜分析了它们的亲水性和纳米纤维结构。所得的CH/PCL-AgNPs复合膜保留了多孔框架,实现了亲水性的平衡,表现出良好的生物相容性,并对革兰氏阴性菌和革兰氏阳性菌均具有广谱抗菌活性,其抗菌效果与AgNP浓度相关。此外,我们的数据表明,这些膜的抗菌效率受孵育期间银离子定时释放的影响。起始浓度为50 µg/mL的AgNPs掺入的膜在孵育的早期8小时内有效抑制了两种微生物的生长。这些见解强调了所开发的电纺复合膜凭借其卓越的抗菌品质在组织工程领域作为创新解决方案的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/58ae911fe5eb/polymers-16-01729-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/7dff8f5013e6/polymers-16-01729-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/2fc7fbee95cb/polymers-16-01729-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/7bc62292db1d/polymers-16-01729-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/21c212bcaf2b/polymers-16-01729-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/0da7673e4e21/polymers-16-01729-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/85456e6dc16f/polymers-16-01729-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/da74a350b186/polymers-16-01729-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/93eb2b506c9b/polymers-16-01729-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/5f0270f5289c/polymers-16-01729-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/94e58e6414ed/polymers-16-01729-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/1441df8d5fd0/polymers-16-01729-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/58ae911fe5eb/polymers-16-01729-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/7dff8f5013e6/polymers-16-01729-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/2fc7fbee95cb/polymers-16-01729-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/7bc62292db1d/polymers-16-01729-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/21c212bcaf2b/polymers-16-01729-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/0da7673e4e21/polymers-16-01729-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/85456e6dc16f/polymers-16-01729-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/da74a350b186/polymers-16-01729-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/93eb2b506c9b/polymers-16-01729-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/5f0270f5289c/polymers-16-01729-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/94e58e6414ed/polymers-16-01729-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/1441df8d5fd0/polymers-16-01729-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a9/11207988/58ae911fe5eb/polymers-16-01729-g012.jpg

相似文献

[1]
Antibacterial Potential and Biocompatibility of Chitosan/Polycaprolactone Nanofibrous Membranes Incorporated with Silver Nanoparticles.

Polymers (Basel). 2024-6-18

[2]
Biophysical properties of electrospun chitosan-grafted poly(lactic acid) nanofibrous scaffolds loaded with chondroitin sulfate and silver nanoparticles.

J Biomater Appl. 2022-1

[3]
Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing.

Acta Biomater. 2022-10-15

[4]
Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications.

Int J Nanomedicine. 2018-9-10

[5]
Antibacterial effect and wound healing ability of silver nanoparticles incorporation into chitosan-based nanofibrous membranes.

Mater Sci Eng C Mater Biol Appl. 2019-1-17

[6]
Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications.

J Mater Sci Mater Med. 2016-10

[7]
Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation.

Acta Biomater. 2018-4-5

[8]
Osteogenic induction of bone marrow mesenchymal cells on electrospun polycaprolactone/chitosan nanofibrous membrane.

Dent Mater J. 2017-5-31

[9]
Effects of wound dressing based on the combination of silver@curcumin nanoparticles and electrospun chitosan nanofibers on wound healing.

Bioengineered. 2022-2

[10]
In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds.

3 Biotech. 2016-12

引用本文的文献

[1]
Chitosan-glycerol blended nanofibers for peripheral nerve regeneration applications.

Nanoscale Adv. 2025-8-12

[2]
Advanced Electrospun Chitosan-(Polylactic Acid)-(Silver Nanoparticle)-Based Scaffolds for Facilitated Healing of Purulent Wounds: A Preclinical Investigation.

Polymers (Basel). 2025-8-15

[3]
A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights.

Nanomaterials (Basel). 2025-8-18

[4]
Silver Nanoparticles (AgNPs) as a Double-Edged Sword: Synthesis, Factors Affecting, Mechanisms of Toxicity and Anticancer Potentials-An Updated Review till March 2025.

Biol Trace Elem Res. 2025-6-13

[5]
Implementing the Design of Experiments (DoE) Concept into the Development of Mucoadhesive Tablets Containing Orange Peel Extract as a Potential Concept for the Treatment of Oral Infections.

Materials (Basel). 2024-10-28

[6]
A Review on Recently Developed Antibacterial Composites of Inorganic Nanoparticles and Non-Hydrogel Polymers for Biomedical Applications.

Nanomaterials (Basel). 2024-10-31

[7]
Copper Nanoparticle Loaded Electrospun Patches for Infected Wound Treatment: From Development to In-Vivo Application.

Polymers (Basel). 2024-9-27

本文引用的文献

[1]
Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds.

Pharmaceutics. 2024-2-26

[2]
Antimicrobial Activity of Two Different Types of Silver Nanoparticles against Wide Range of Pathogenic Bacteria.

Nanomaterials (Basel). 2024-1-7

[3]
Influence of Electrospinning Parameters on the Morphology of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fibrous Membranes and Their Application as Potential Air Filtration Materials.

Polymers (Basel). 2024-1-4

[4]
Chitosan nanocomposite for tissue engineering and regenerative medicine: A review.

Int J Biol Macromol. 2024-1

[5]
Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application.

J Funct Biomater. 2023-8-5

[6]
Multifunctional bilayer membranes composed of poly(lactic acid), beta-chitin whiskers and silver nanoparticles for wound dressing applications.

Int J Biol Macromol. 2023-11-1

[7]
Overview of Electrospinning for Tissue Engineering Applications.

Polymers (Basel). 2023-5-23

[8]
Advances in nanomaterial-based targeted drug delivery systems.

Front Bioeng Biotechnol. 2023-4-13

[9]
Underestimated microbial infection of resorbable membranes on guided regeneration.

Colloids Surf B Biointerfaces. 2023-6

[10]
Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering.

ACS Appl Mater Interfaces. 2023-3-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索