Korniienko Viktoriia, Husak Yevgeniia, Diedkova Kateryna, Varava Yuliia, Grebnevs Vladlens, Pogorielova Oksana, Bērtiņš Māris, Korniienko Valeriia, Zandersone Baiba, Ramanaviciene Almira, Ramanavicius Arunas, Pogorielov Maksym
Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia.
Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine.
Polymers (Basel). 2024 Jun 18;16(12):1729. doi: 10.3390/polym16121729.
This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan-a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties-emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering.
本研究旨在满足对电纺膜增强抗菌性能的需求,无论是通过表面改性还是加入抗菌剂,这对改善临床结果至关重要。在这种背景下,壳聚糖——一种因其生物相容性和模仿细胞外基质特性而备受赞誉的生物聚合物——成为组织再生的优秀候选材料。然而,通过静电纺丝制备壳聚糖纳米纤维往往对其结构完整性的保持构成挑战。本研究创新性地采用逐层静电纺丝技术,开发出一种壳聚糖/聚己内酯(CH/PCL)复合纳米纤维膜,并通过湿化学法合成的银纳米颗粒(AgNPs)对其进行增强。评估了电纺壳聚糖膜的抗菌效果、粘附性能和细胞毒性,同时使用扫描电子显微镜分析了它们的亲水性和纳米纤维结构。所得的CH/PCL-AgNPs复合膜保留了多孔框架,实现了亲水性的平衡,表现出良好的生物相容性,并对革兰氏阴性菌和革兰氏阳性菌均具有广谱抗菌活性,其抗菌效果与AgNP浓度相关。此外,我们的数据表明,这些膜的抗菌效率受孵育期间银离子定时释放的影响。起始浓度为50 µg/mL的AgNPs掺入的膜在孵育的早期8小时内有效抑制了两种微生物的生长。这些见解强调了所开发的电纺复合膜凭借其卓越的抗菌品质在组织工程领域作为创新解决方案的潜力。
Mater Sci Eng C Mater Biol Appl. 2019-1-17
Nanoscale Adv. 2025-8-12
Nanomaterials (Basel). 2025-8-18
Nanomaterials (Basel). 2024-1-7
Int J Biol Macromol. 2024-1
Polymers (Basel). 2023-5-23
Front Bioeng Biotechnol. 2023-4-13
Colloids Surf B Biointerfaces. 2023-6
ACS Appl Mater Interfaces. 2023-3-9