Suppr超能文献

用于组织工程的聚己内酯-MXene纳米纤维支架

Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering.

作者信息

Diedkova Kateryna, Pogrebnjak Alexander D, Kyrylenko Sergiy, Smyrnova Kateryna, Buranich Vladimir V, Horodek Pawel, Zukowski Pawel, Koltunowicz Tomasz N, Galaszkiewicz Piotr, Makashina Kristina, Bondariev Vitaly, Sahul Martin, Čaplovičová Maria, Husak Yevheniia, Simka Wojciech, Korniienko Viktoriia, Stolarczyk Agnieszka, Blacha-Grzechnik Agata, Balitskyi Vitalii, Zahorodna Veronika, Baginskiy Ivan, Riekstina Una, Gogotsi Oleksiy, Gogotsi Yury, Pogorielov Maksym

机构信息

Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine.

University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 9. doi: 10.1021/acsami.2c22780.

Abstract

New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized TiCT MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 10 Hz with the relaxation time of 6.5 × 10 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.

摘要

组织工程学需要新型导电材料来开发针对神经、肌肉和心脏组织的再生策略。聚己内酯(PCL)通过静电纺丝用于制备生物相容性和可生物降解的纳米纤维支架。MXenes是一大类生物相容性二维纳米材料,可使聚合物支架具有导电性和亲水性。然而,目前仍缺乏对其物理性质如何影响潜在生物医学应用的了解。我们将多层TiCT MXene固定在静电纺丝的PCL膜上,并结合其他技术使用正电子湮没分析来阐明纳米纤维支架的缺陷结构和孔隙率。聚合物基底具有纳米孔特征。MXene表面层在305 - 355 K温度下有大量空位,并且在20 - 355 K温度区间内发现了8×10 Hz的电压共振,弛豫时间为6.5×10 s。观察到正电子寿命出现长寿命成分,这取决于退火温度。在宽温度范围内对复合支架的电导率进行研究,包括其电感和电容成分,结果表明使用MXene涂层的PCL膜作为导电生物材料具有可能性。MXene的电子结构及其层中形成的缺陷与支架的生物学性质以及细菌粘附试验相关。双层和三层MXene涂层形成了适合细胞附着和增殖的环境,同时具有温和的抗菌作用。PCL - MXene复合材料的结构、化学、电学和生物学性质的结合证明了其相对于现有组织工程导电支架的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验