Suppr超能文献

利用分数各向异性(FA)微观结构图谱探寻深度学习临床敏感性的极限。

Finding the limits of deep learning clinical sensitivity with fractional anisotropy (FA) microstructure maps.

作者信息

Gaviraghi Marta, Ricciardi Antonio, Palesi Fulvia, Brownlee Wallace, Vitali Paolo, Prados Ferran, Kanber Baris, Gandini Wheeler-Kingshott Claudia A M

机构信息

Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

NMR Research Unit, Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.

出版信息

Front Neuroinform. 2024 Jun 12;18:1415085. doi: 10.3389/fninf.2024.1415085. eCollection 2024.

Abstract

BACKGROUND

Quantitative maps obtained with diffusion weighted (DW) imaging, such as fractional anisotropy (FA) -calculated by fitting the diffusion tensor (DT) model to the data,-are very useful to study neurological diseases. To fit this map accurately, acquisition times of the order of several minutes are needed because many noncollinear DW volumes must be acquired to reduce directional biases. Deep learning (DL) can be used to reduce acquisition times by reducing the number of DW volumes. We already developed a DL network named "one-minute FA," which uses 10 DW volumes to obtain FA maps, maintaining the same characteristics and clinical sensitivity of the FA maps calculated with the standard method using more volumes. Recent publications have indicated that it is possible to train DL networks and obtain FA maps even with 4 DW input volumes, far less than the minimum number of directions for the mathematical estimation of the DT.

METHODS

Here we investigated the impact of reducing the number of DW input volumes to 4 or 7, and evaluated the performance and clinical sensitivity of the corresponding DL networks trained to calculate FA, while comparing results also with those using our one-minute FA. Each network training was performed on the human connectome project open-access dataset that has a high resolution and many DW volumes, used to fit a ground truth FA. To evaluate the generalizability of each network, they were tested on two external clinical datasets, not seen during training, and acquired on different scanners with different protocols, as previously done.

RESULTS

Using 4 or 7 DW volumes, it was possible to train DL networks to obtain FA maps with the same range of values as ground truth - map, only when using HCP test data; pathological sensitivity was lost when tested using the external clinical datasets: indeed in both cases, no consistent differences were found between patient groups. On the contrary, our "one-minute FA" did not suffer from the same problem.

CONCLUSION

When developing DL networks for reduced acquisition times, the ability to generalize and to generate quantitative biomarkers that provide clinical sensitivity must be addressed.

摘要

背景

通过扩散加权(DW)成像获得的定量图谱,如通过将扩散张量(DT)模型拟合到数据中计算得到的分数各向异性(FA),对于研究神经系统疾病非常有用。为了准确拟合此图谱,由于必须采集许多非共线的DW体积数据以减少方向偏差,因此需要几分钟量级的采集时间。深度学习(DL)可用于通过减少DW体积数据的数量来缩短采集时间。我们已经开发了一个名为“一分钟FA”的DL网络,该网络使用10个DW体积数据来获取FA图谱,同时保持与使用更多体积数据的标准方法计算得到的FA图谱相同的特征和临床敏感性。最近的出版物表明,即使使用4个DW输入体积数据也有可能训练DL网络并获得FA图谱,这远远少于DT数学估计所需的最小方向数。

方法

在此,我们研究了将DW输入体积数据数量减少到4个或7个的影响,并评估了训练用于计算FA的相应DL网络的性能和临床敏感性,同时还将结果与使用我们的“一分钟FA”的结果进行比较。每个网络训练均在人类连接组计划开放获取数据集上进行,该数据集具有高分辨率和许多DW体积数据,用于拟合真实的FA。为了评估每个网络的通用性,按照之前的做法,在两个训练期间未见过的外部临床数据集上对它们进行测试,这些数据集是在不同的扫描仪上使用不同的协议采集的。

结果

仅当使用人类连接组计划测试数据时,使用4个或7个DW体积数据才有可能训练DL网络以获得与真实图谱值范围相同的FA图谱;当使用外部临床数据集进行测试时,病理敏感性丧失:实际上在这两种情况下,患者组之间均未发现一致的差异。相反,我们的“一分钟FA”没有遇到同样的问题。

结论

在开发用于缩短采集时间的DL网络时,必须解决网络的通用性以及生成具有临床敏感性的定量生物标志物的能力问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验