Suppr超能文献

单纳米颗粒追踪揭示细菌群体中的长距离运输

Long-distance Transport in Bacterial Swarms Revealed by Single Nanoparticle Tracking.

作者信息

Feng Jingjing, He Yan

机构信息

Department of Chemistry, Tsinghua University, Beijing, China.

出版信息

Bio Protoc. 2020 Nov 5;10(21):e3812. doi: 10.21769/BioProtoc.3812.

Abstract

During swarming, high density flagella-driven bacteria migrate collectively in a swirling pattern on wet agar surfaces, immersed in a thin viscous fluid layer called "swarm fluid". Though the fluid environment has essential role in the emergence of swarming behavior, the microscopic mechanisms of it in mediating the cooperation of bacteria populations are not fully understood. Here, instead of micro-sized tracers used in previous research, we use gold nanorods as single particle tracers to probe the dynamics of the swarm fluid. This protocol includes five major parts: (1) the culture of swarming bacterial colony; (2) the preparations of gold nanorod tracers and the micro-spraying technique which are used to put the nanotracers into the upper fluid of bacterial swarms; (3) imaging and tracking; (4) other necessary control experiments; (5) data analysis and fitting of physical models. With this method, the nano-sized tracers could move long distances above motile cells without direct collisions with the bacteria bodies. In this way, the microscopic dynamics of the swarm fluid could be tracked with high spatiotemporal resolution. Moreover, the comprehensive analysis of multi-particle trajectories provides systematic visualization of the fluid dynamics. The method is promising to probe the fluid dynamics of other natural or artificial active matter systems.

摘要

在群体运动过程中,高密度鞭毛驱动的细菌在潮湿琼脂表面以漩涡模式集体迁移,浸没在一层称为“群体流体”的薄粘性流体层中。尽管流体环境在群体运动行为的出现中起着至关重要的作用,但其介导细菌群体合作的微观机制尚未完全了解。在这里,我们使用金纳米棒作为单粒子示踪剂来探测群体流体的动力学,而不是像之前研究中使用的微米级示踪剂。该方案包括五个主要部分:(1)群体细菌菌落的培养;(2)金纳米棒示踪剂的制备以及用于将纳米示踪剂引入细菌群体上层流体的微喷雾技术;(3)成像与跟踪;(4)其他必要的对照实验;(5)数据分析和物理模型拟合。通过这种方法,纳米级示踪剂可以在运动细胞上方远距离移动,而不会与细菌体直接碰撞。通过这种方式,可以以高时空分辨率跟踪群体流体的微观动力学。此外,对多粒子轨迹的综合分析提供了流体动力学的系统可视化。该方法有望用于探测其他自然或人工活性物质系统的流体动力学。

相似文献

4
Microbubbles reveal chiral fluid flows in bacterial swarms.微泡揭示细菌群中的手性流。
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4147-51. doi: 10.1073/pnas.1016693108. Epub 2011 Feb 7.
5
Visualization of Flagella during bacterial Swarming.细菌群集过程中鞭毛的可视化。
J Bacteriol. 2010 Jul;192(13):3259-67. doi: 10.1128/JB.00083-10. Epub 2010 Apr 2.
7
Dynamics of bacterial swarming.细菌群集的动力学。
Biophys J. 2010 May 19;98(10):2082-90. doi: 10.1016/j.bpj.2010.01.053.
9
The upper surface of an Escherichia coli swarm is stationary.大肠杆菌群的上表面是静止的。
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):288-90. doi: 10.1073/pnas.0912804107. Epub 2009 Dec 4.

本文引用的文献

3
Collective motion of spherical bacteria.球形细菌的集体运动。
PLoS One. 2013 Dec 20;8(12):e83760. doi: 10.1371/journal.pone.0083760. eCollection 2013.
5
Collective dynamics of model microorganisms with chemotactic signaling.具有趋化信号的模型微生物的集体动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051901. doi: 10.1103/PhysRevE.85.051901. Epub 2012 May 1.
6
Meso-scale turbulence in living fluids.活体流体中的中尺度湍流。
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14308-13. doi: 10.1073/pnas.1202032109. Epub 2012 Aug 20.
7
Water reservoir maintained by cell growth fuels the spreading of a bacterial swarm.细胞生长维持的水水库为细菌群的扩散提供燃料。
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4128-33. doi: 10.1073/pnas.1118238109. Epub 2012 Feb 27.
9
Microbubbles reveal chiral fluid flows in bacterial swarms.微泡揭示细菌群中的手性流。
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4147-51. doi: 10.1073/pnas.1016693108. Epub 2011 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验