Suppr超能文献

基于概率通路的多模态因子分析。

Probabilistic pathway-based multimodal factor analysis.

机构信息

Biomedical Informatics Group, Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.

Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany.

出版信息

Bioinformatics. 2024 Jun 28;40(Suppl 1):i189-i198. doi: 10.1093/bioinformatics/btae216.

Abstract

MOTIVATION

Multimodal profiling strategies promise to produce more informative insights into biomedical cohorts via the integration of the information each modality contributes. To perform this integration, however, the development of novel analytical strategies is needed. Multimodal profiling strategies often come at the expense of lower sample numbers, which can challenge methods to uncover shared signals across a cohort. Thus, factor analysis approaches are commonly used for the analysis of high-dimensional data in molecular biology, however, they typically do not yield representations that are directly interpretable, whereas many research questions often center around the analysis of pathways associated with specific observations.

RESULTS

We develop PathFA, a novel approach for multimodal factor analysis over the space of pathways. PathFA produces integrative and interpretable views across multimodal profiling technologies, which allow for the derivation of concrete hypotheses. PathFA combines a pathway-learning approach with integrative multimodal capability under a Bayesian procedure that is efficient, hyper-parameter free, and able to automatically infer observation noise from the data. We demonstrate strong performance on small sample sizes within our simulation framework and on matched proteomics and transcriptomics profiles from real tumor samples taken from the Swiss Tumor Profiler consortium. On a subcohort of melanoma patients, PathFA recovers pathway activity that has been independently associated with poor outcome. We further demonstrate the ability of this approach to identify pathways associated with the presence of specific cell-types as well as tumor heterogeneity. Our results show that we capture known biology, making it well suited for analyzing multimodal sample cohorts.

AVAILABILITY AND IMPLEMENTATION

The tool is implemented in python and available at https://github.com/ratschlab/path-fa.

摘要

动机

通过整合每种模态所贡献的信息,多模态分析策略有望为生物医学队列提供更具信息量的见解。然而,要进行这种整合,需要开发新的分析策略。多模态分析策略通常会牺牲较低的样本数量,这可能会对揭示队列中共享信号的方法构成挑战。因此,因子分析方法常用于分子生物学中高维数据的分析,但是它们通常不能产生直接可解释的表示,而许多研究问题通常集中在与特定观察结果相关的途径分析上。

结果

我们开发了 PathFA,这是一种用于途径空间的多模态因子分析的新方法。PathFA 可以跨多种多模态分析技术产生综合且可解释的视图,从而为得出具体假设提供了可能。PathFA 将途径学习方法与综合多模态能力结合在一个贝叶斯程序下,该程序高效、无超参数,并且能够从数据中自动推断观测噪声。我们在模拟框架内的小样本量以及来自瑞士肿瘤分析者协会的真实肿瘤样本的匹配蛋白质组学和转录组学数据上展示了强大的性能。在一个黑色素瘤患者亚组中,PathFA 恢复了与不良预后独立相关的途径活性。我们进一步证明了该方法识别与特定细胞类型存在以及肿瘤异质性相关的途径的能力。我们的结果表明,我们捕获了已知的生物学信息,使其非常适合分析多模态样本队列。

可用性和实现

该工具是用 python 编写的,可以在 https://github.com/ratschlab/path-fa 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4176/11256960/025842fd6cd3/btae216f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验