Suppr超能文献

探索肺腺癌上皮细胞的多样性:推进预后方法和免疫治疗策略。

Exploring cellular diversity in lung adenocarcinoma epithelium: Advancing prognostic methods and immunotherapeutic strategies.

机构信息

Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

出版信息

Cell Prolif. 2024 Nov;57(11):e13703. doi: 10.1111/cpr.13703. Epub 2024 Jun 30.

Abstract

Immunotherapy has brought significant advancements in the treatment of lung adenocarcinoma (LUAD), but identifying suitable candidates remains challenging. In this study, we investigated tumour cell heterogeneity using extensive single-cell data and explored the impact of different tumour cell cluster abundances on immunotherapy in the POPLAR and OAK immunotherapy cohorts. Notably, we found a significant correlation between CKS1B+ tumour cell abundance and treatment response, as well as stemness potential. Leveraging marker genes from the CKS1B+ tumour cell cluster, we employed machine learning algorithms to establish a prognostic and immunotherapeutic signature (PIS) for LUAD. In multiple cohorts, PIS outperformed 144 previously published signatures in predicting LUAD prognosis. Importantly, PIS reliably predicted genomic alterations, chemotherapy sensitivity and immunotherapy responses. Immunohistochemistry validated lower expression of immune markers in the low-PIS group, while in vitro experiments underscored the role of the key gene PSMB7 in LUAD progression. In conclusion, PIS represents a novel biomarker facilitating the selection of suitable LUAD patients for immunotherapy, ultimately improving prognosis and guiding clinical decisions.

摘要

免疫疗法在治疗肺腺癌 (LUAD) 方面带来了重大进展,但确定合适的候选者仍然具有挑战性。在这项研究中,我们使用广泛的单细胞数据研究了肿瘤细胞异质性,并探讨了不同肿瘤细胞簇丰度对 POPLAR 和 OAK 免疫治疗队列中免疫治疗的影响。值得注意的是,我们发现 CKS1B+肿瘤细胞丰度与治疗反应以及干性潜能之间存在显著相关性。利用 CKS1B+肿瘤细胞簇中的标记基因,我们采用机器学习算法为 LUAD 建立了一个预后和免疫治疗特征 (PIS)。在多个队列中,PIS 在预测 LUAD 预后方面优于 144 个先前发表的特征。重要的是,PIS 可靠地预测了基因组改变、化疗敏感性和免疫治疗反应。免疫组织化学验证了低 PIS 组中免疫标志物的表达较低,而体外实验则强调了关键基因 PSMB7 在 LUAD 进展中的作用。总之,PIS 代表了一种新的生物标志物,有助于为免疫治疗选择合适的 LUAD 患者,最终改善预后并指导临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f4d/11533061/f1de2f4f2412/CPR-57-e13703-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验