文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用线粒体程序性细胞死亡动力学提高肺腺癌的预后准确性和免疫治疗效果。

Leveraging mitochondrial-programmed cell death dynamics to enhance prognostic accuracy and immunotherapy efficacy in lung adenocarcinoma.

机构信息

Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

出版信息

J Immunother Cancer. 2024 Oct 24;12(10):e010008. doi: 10.1136/jitc-2024-010008.


DOI:10.1136/jitc-2024-010008
PMID:39455097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11529751/
Abstract

BACKGROUND: Lung adenocarcinoma (LUAD) is a highly heterogeneous disease, posing significant challenges to accurate prognosis prediction. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence programmed cell death (PCD) mechanisms, which are critical in tumorigenesis and cancer progression. However, the prognostic significance of the interplay between mitochondrial function and PCD in LUAD requires further investigation. METHODS: We analyzed data from 1231 LUAD patients across seven global cohorts to develop a mitochondrial-related PCD signature (MPCDS) using machine learning. Validation was done using six immunotherapy cohorts (LUAD, melanoma, clear cell renal cell carcinoma; n=935) and a pan-cancer cohort of 21 tumor types. An in-house LUAD tissue cohort (n=100) confirmed the prognostic significance of nucleoside diphosphate kinase 4 (NME4). In vivo and in vitro experiments explored NME4's role in immune exclusion. RESULTS: The MPCDS demonstrated strong predictive performance for prognosis in LUAD patients, surpassing 114 previously published LUAD signatures. Additionally, MPCDS effectively predicted outcomes in immunotherapy patients (including those with LUAD, melanoma, and clear cell renal cell carcinoma). Biologically, MPCDS was significantly associated with immune features, with the high MPCDS group exhibiting reduced immune activity and a tendency towards cold tumors. NME4, a key gene within the MPCDS (correlation=0.55, p<0.05), was associated with poorer prognosis in LUAD patients with high expression, particularly in CD8 desert phenotypes, as validated by our in-house cohort. Multiplex immunofluorescence confirmed the spatial colocalization and exclusion relationship between NME4 and immune cells such as CD3+ T cells and CD20+ B cells. Further experiments revealed that NME4 regulated the proliferation and invasion of LUAD cells both in vitro and in vivo. Importantly, inhibiting NME4 increased the abundance and activity of CD8+ T cells and enhanced the antitumor immunity of anti-programmed cell death protein-1 therapy in vivo. CONCLUSION: The MPCDS provides personalized risk assessment and immunotherapy interventions for individual LUAD patients. NME4, a key gene within the MPCDS, has been identified as a novel oncogene associated with immune exclusion and may serve as a new target for LUAD intervention and immunotherapy.

摘要

背景:肺腺癌(LUAD)是一种高度异质性疾病,对准确的预后预测构成重大挑战。线粒体在真核细胞的能量代谢中发挥核心作用,并能影响程序性细胞死亡(PCD)机制,这些机制在肿瘤发生和癌症进展中至关重要。然而,线粒体功能与 LUAD 中 PCD 相互作用的预后意义需要进一步研究。

方法:我们使用机器学习对来自七个全球队列的 1231 例 LUAD 患者的数据进行分析,以开发与线粒体相关的 PCD 特征(MPCDS)。使用六个免疫治疗队列(LUAD、黑色素瘤、透明细胞肾细胞癌;n=935)和 21 种肿瘤类型的泛癌队列进行验证。一个内部 LUAD 组织队列(n=100)证实了核苷二磷酸激酶 4(NME4)的预后意义。体内和体外实验探索了 NME4 在免疫排斥中的作用。

结果:MPCDS 对 LUAD 患者的预后具有很强的预测性能,超过了 114 个先前发表的 LUAD 特征。此外,MPCDS 还能有效地预测免疫治疗患者的预后(包括 LUAD、黑色素瘤和透明细胞肾细胞癌患者)。从生物学角度来看,MPCDS 与免疫特征显著相关,高 MPCDS 组表现出免疫活性降低,肿瘤倾向于冷肿瘤。NME4 是 MPCDS 中的关键基因(相关性=0.55,p<0.05),在高表达的 LUAD 患者中与较差的预后相关,特别是在 CD8 荒漠表型中,我们的内部队列验证了这一点。多重免疫荧光证实了 NME4 与 CD3+T 细胞和 CD20+B 细胞等免疫细胞的空间共定位和排斥关系。进一步的实验表明,NME4 可在体外和体内调节 LUAD 细胞的增殖和侵袭。重要的是,抑制 NME4 可增加 CD8+T 细胞的丰度和活性,并增强体内抗程序性细胞死亡蛋白-1 治疗的抗肿瘤免疫。

结论:MPCDS 为个体 LUAD 患者提供了个性化的风险评估和免疫治疗干预措施。NME4 是 MPCDS 中的一个关键基因,已被确定为一种与免疫排斥相关的新型致癌基因,可能成为 LUAD 干预和免疫治疗的新靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/a7d8645a1d4e/jitc-12-10-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/a7ae0598ff53/jitc-12-10-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/090550245640/jitc-12-10-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/1cb5009c89c7/jitc-12-10-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/f7646efcbc05/jitc-12-10-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/79eff2397e4d/jitc-12-10-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/8389c3f1ac40/jitc-12-10-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/6d083f13dadf/jitc-12-10-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/7972c249f910/jitc-12-10-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/a7d8645a1d4e/jitc-12-10-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/a7ae0598ff53/jitc-12-10-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/090550245640/jitc-12-10-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/1cb5009c89c7/jitc-12-10-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/f7646efcbc05/jitc-12-10-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/79eff2397e4d/jitc-12-10-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/8389c3f1ac40/jitc-12-10-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/6d083f13dadf/jitc-12-10-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/7972c249f910/jitc-12-10-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd11/11529751/a7d8645a1d4e/jitc-12-10-g009.jpg

相似文献

[1]
Leveraging mitochondrial-programmed cell death dynamics to enhance prognostic accuracy and immunotherapy efficacy in lung adenocarcinoma.

J Immunother Cancer. 2024-10-24

[2]
Fatty acid metabolism prognostic signature predicts tumor immune microenvironment and immunotherapy, and identifies tumorigenic role of MOGAT2 in lung adenocarcinoma.

Front Immunol. 2024

[3]
Integrating multi-omics and machine learning survival frameworks to build a prognostic model based on immune function and cell death patterns in a lung adenocarcinoma cohort.

Front Immunol. 2024

[4]
Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns.

J Cancer Res Clin Oncol. 2023-10

[5]
Machine-learning and combined analysis of single-cell and bulk-RNA sequencing identified a DC gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma.

J Cancer Res Clin Oncol. 2023-11

[6]
Prognostic Cell Death Index for Lung Adenocarcinoma: A Comprehensive Transcriptome-Based Analysis of Twelve Programmed Cell Death Pattern Genes.

Front Biosci (Landmark Ed). 2024-4-1

[7]
A programmed cell death-related model based on machine learning for predicting prognosis and immunotherapy responses in patients with lung adenocarcinoma.

Front Immunol. 2023

[8]
Leveraging diverse cell-death patterns to predict the clinical outcome of immune checkpoint therapy in lung adenocarcinoma: Based on muti-omics analysis and vitro assay.

Oncol Res. 2023

[9]
Comprehensive multi-omics integration uncovers mitochondrial gene signatures for prognosis and personalized therapy in lung adenocarcinoma.

J Transl Med. 2024-10-21

[10]
Multi‑omics identification of a signature based on malignant cell-associated ligand-receptor genes for lung adenocarcinoma.

BMC Cancer. 2024-9-12

引用本文的文献

[1]
Tumor associated neutrophils promote prostate cancer progression by mediating neutrophil trap secretion through PSMA1- NF-κB-HIF-1α signaling axis.

Front Immunol. 2025-8-18

[2]
Identification of biomarkers based on ubiquitin-correlated genes for predicting immune profile and drug sensitivity in lung adenocarcinoma.

Front Pharmacol. 2025-8-15

[3]
SLC39A14 Is a Potential Therapy Target and Prognostic Biomarker for Acute Myeloid Leukemia.

Genes (Basel). 2025-7-27

[4]
Single-cell and multi-omics analysis reveals the role of stem cells in prognosis and immunotherapy of lung adenocarcinoma patients.

Front Immunol. 2025-7-22

[5]
Mitochondrial Pathway Signature (MitoPS) predicts immunotherapy response and reveals NDUFB10 as a key immune regulator in lung adenocarcinoma.

J Immunother Cancer. 2025-7-31

[6]
The Critical Role of APOE+ Macrophages in the Immune Microenvironment and Prognosis of Lung Adenocarcinoma.

J Cell Mol Med. 2025-8

[7]
From oncogenesis to prognosis: the roles of the immunoproteasome in cancer.

Front Immunol. 2025-7-8

[8]
Mitochondria-related gene-based molecular subtypes of lung adenocarcinoma and their prognostic implications.

Sci Rep. 2025-7-22

[9]
Integrated multi-omics analysis reveals the immunotherapeutic significance of tumor cells with high FN1 expression in ovarian cancer.

Front Mol Biosci. 2025-6-19

[10]
Prognostic model of lung adenocarcinoma based on disulfidptosis-related genes and analysis of in vitro cell experiments for PPP1R14B in the model.

Biol Direct. 2025-7-1

本文引用的文献

[1]
Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy.

NPJ Precis Oncol. 2024-2-26

[2]
The prognostic biological markers of immunotherapy for non-small cell lung cancer: current landscape and future perspective.

Front Immunol. 2023

[3]
Machine learning-based integration develops a metabolism-derived consensus model for improving immunotherapy in pancreatic cancer.

J Immunother Cancer. 2023-9

[4]
Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma.

J Transl Med. 2023-9-2

[5]
Heterogeneity of tumor immune microenvironment in malignant and metastatic change in LUAD is revealed by single-cell RNA sequencing.

Aging (Albany NY). 2023-6-16

[6]
Genomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer.

Nat Genet. 2023-5

[7]
SECTM1 is upregulated in immuno-hot tumors and predicts immunotherapeutic efficacy in multiple cancers.

iScience. 2023-1-23

[8]
Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics.

Exp Mol Med. 2022-11

[9]
Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery.

Int J Surg. 2022-11

[10]
Integrated analysis of multimodal single-cell data with structural similarity.

Nucleic Acids Res. 2022-11-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索