Suppr超能文献

预测脑血管年龄及其临床相关性:利用脑血管三维形态特征进行建模

Predicting cerebrovascular age and its clinical relevance: Modeling using 3D morphological features of brain vessels.

作者信息

Cho Hwan-Ho, Kim Jonghoon, Na Inye, Song Ha-Na, Choi Jong-Un, Baek In-Young, Lee Ji-Eun, Chung Jong-Won, Kim Chi-Kyung, Oh Kyungmi, Bang Oh-Young, Kim Gyeong-Moon, Seo Woo-Keun, Park Hyunjin

机构信息

Department of Electronics Engineering, Incheon National University, Incheon, South Korea.

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea.

出版信息

Heliyon. 2024 Jun 4;10(11):e32375. doi: 10.1016/j.heliyon.2024.e32375. eCollection 2024 Jun 15.

Abstract

Aging manifests as many phenotypes, among which age-related changes in brain vessels are important, but underexplored. Thus, in the present study, we constructed a model to predict age using cerebrovascular morphological features, further assessing their clinical relevance using a novel pipeline. Age prediction models were first developed using data from a normal cohort (n = 1181), after which their relevance was tested in two stroke cohorts (n = 564 and n = 455). Our novel pipeline adapted an existing framework to compute generic vessel features for brain vessels, resulting in 126 morphological features. We further built various machine learning models to predict age using only clinical factors, only brain vessel features, and a combination of both. We further assessed deviation from healthy aging using the age gap and explored its clinical relevance by correlating the predicted age and age gap with various risk factors. The models constructed using only brain vessel features and those combining clinical factors with vessel features were better predictors of age than the clinical factor-only model (r = 0.37, 0.48, and 0.26, respectively). Predicted age was associated with many known clinical factors, and the associations were stronger for the age gap in the normal cohort. The age gap was also associated with important factors in the pooled cohort atherosclerotic cardiovascular disease risk score and white matter hyperintensity measurements. Cerebrovascular age, computed using the morphological features of brain vessels, could serve as a potential individualized marker for the early detection of various cerebrovascular diseases.

摘要

衰老表现为多种表型,其中脑血管的年龄相关变化很重要,但尚未得到充分研究。因此,在本研究中,我们构建了一个使用脑血管形态特征预测年龄的模型,并使用一种新的流程进一步评估其临床相关性。年龄预测模型首先使用来自正常队列(n = 1181)的数据开发,之后在两个中风队列(n = 564和n = 455)中测试其相关性。我们的新流程采用了一个现有的框架来计算脑血管的一般血管特征,从而得到126个形态特征。我们进一步构建了各种机器学习模型,分别仅使用临床因素、仅使用脑血管特征以及两者结合来预测年龄。我们还使用年龄差距评估了与健康衰老的偏差,并通过将预测年龄和年龄差距与各种风险因素相关联来探索其临床相关性。仅使用脑血管特征构建的模型以及将临床因素与血管特征相结合构建的模型,比仅使用临床因素的模型更能准确预测年龄(相关系数分别为0.37、0.48和0.26)。预测年龄与许多已知临床因素相关,并且在正常队列中年龄差距的相关性更强。年龄差距还与合并队列中的动脉粥样硬化性心血管疾病风险评分和白质高信号测量的重要因素相关。使用脑血管形态特征计算的脑血管年龄可作为早期检测各种脑血管疾病的潜在个体化标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c36e/11214500/442a35702f11/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验