Suppr超能文献

基于可解释机器学习算法构建结直肠癌患者术后住院时间预测模型:一项前瞻性初步研究。

Construction of a predictive model for postoperative hospitalization time in colorectal cancer patients based on interpretable machine learning algorithm: a prospective preliminary study.

作者信息

Wen Zhongjian, Wang Yiren, Chen Shouying, Li Yunfei, Deng Hairui, Pang Haowen, Guo Shengmin, Zhou Ping, Zhu Shiqin

机构信息

School of Nursing, Southwest Medical University, Luzhou, China.

Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China.

出版信息

Front Oncol. 2024 Jun 14;14:1384931. doi: 10.3389/fonc.2024.1384931. eCollection 2024.

Abstract

OBJECTIVE

This study aims to construct a predictive model based on machine learning algorithms to assess the risk of prolonged hospital stays post-surgery for colorectal cancer patients and to analyze preoperative and postoperative factors associated with extended hospitalization.

METHODS

We prospectively collected clinical data from 83 colorectal cancer patients. The study included 40 variables (comprising 39 predictor variables and 1 target variable). Important variables were identified through variable selection via the Lasso regression algorithm, and predictive models were constructed using ten machine learning models, including Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, Light Gradient Boosting Machine, KNN, and Extreme Gradient Boosting, Categorical Boosting, Artificial Neural Network and Deep Forest. The model performance was evaluated using Bootstrap ROC curves and calibration curves, with the optimal model selected and further interpreted using the SHAP explainability algorithm.

RESULTS

Ten significantly correlated important variables were identified through Lasso regression, validated by 1000 Bootstrap resamplings, and represented through Bootstrap ROC curves. The Logistic Regression model achieved the highest AUC (AUC=0.99, 95% CI=0.97-0.99). The explainable machine learning algorithm revealed that the distance walked on the third day post-surgery was the most important variable for the LR model.

CONCLUSION

This study successfully constructed a model predicting postoperative hospital stay duration using patients' clinical data. This model promises to provide healthcare professionals with a more precise prediction tool in clinical practice, offering a basis for personalized nursing interventions, thereby improving patient prognosis and quality of life and enhancing the efficiency of medical resource utilization.

摘要

目的

本研究旨在构建基于机器学习算法的预测模型,以评估结直肠癌患者术后住院时间延长的风险,并分析与延长住院相关的术前和术后因素。

方法

我们前瞻性收集了83例结直肠癌患者的临床数据。该研究包括40个变量(包括39个预测变量和1个目标变量)。通过Lasso回归算法进行变量选择来识别重要变量,并使用十种机器学习模型构建预测模型,包括逻辑回归、决策树、随机森林、支持向量机、轻梯度提升机、K近邻、极端梯度提升、分类提升、人工神经网络和深度森林。使用Bootstrap ROC曲线和校准曲线评估模型性能,选择最优模型并使用SHAP可解释性算法进行进一步解释。

结果

通过Lasso回归识别出十个显著相关的重要变量,经1000次Bootstrap重采样验证,并通过Bootstrap ROC曲线表示。逻辑回归模型的AUC最高(AUC = 0.99,95% CI = 0.97 - 0.99)。可解释机器学习算法显示,术后第三天行走的距离是LR模型中最重要的变量。

结论

本研究成功利用患者临床数据构建了预测术后住院时间的模型。该模型有望在临床实践中为医护人员提供更精确的预测工具,为个性化护理干预提供依据,从而改善患者预后和生活质量,提高医疗资源利用效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df3c/11211394/ae99b7d510c7/fonc-14-1384931-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验