Suppr超能文献

从非常短的 fMRI 扫描中获得的具有空间约束的内在功能网络的可靠性和临床实用性。

Reliability and clinical utility of spatially constrained estimates of intrinsic functional networks from very short fMRI scans.

机构信息

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Mental Health Service, San Francisco Veterans Affairs Healthcare System, San Francisco, California, USA.

出版信息

Hum Brain Mapp. 2023 Apr 15;44(6):2620-2635. doi: 10.1002/hbm.26234. Epub 2023 Feb 25.

Abstract

Resting-state functional network connectivity (rsFNC) has shown utility for identifying characteristic functional brain patterns in individuals with psychiatric and mood disorders, providing a promising avenue for biomarker development. However, several factors have precluded widespread clinical adoption of rsFNC diagnostics, namely a lack of standardized approaches for capturing comparable and reproducible imaging markers across individuals, as well as the disagreement on the amount of data required to robustly detect intrinsic connectivity networks (ICNs) and diagnostically relevant patterns of rsFNC at the individual subject level. Recently, spatially constrained independent component analysis (scICA) has been proposed as an automated method for extracting ICNs standardized to a chosen network template while still preserving individual variation. Leveraging the scICA methodology, which solves the former challenge of standardized neuroimaging markers, we investigate the latter challenge of identifying a minimally sufficient data length for clinical applications of resting-state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated the robustness of ICN and rsFNC estimates at both the subject- and group-level, as well as the performance of diagnostic classification, with respect to the length of the rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full-length (5 min) reference time course were sufficiently approximated with just 3-3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group-average rsFNC could be sufficiently approximated with even less data, just 2 min (r = 0.86). These results from the shorter clinical data were largely consistent with the results from validation experiments using longer time series from both simulated (30 min) and real-world (14 min) datasets, in which estimates of subject-level FNC were reliably estimated with 3-5 min of data. Moreover, in the real-world data we found rsFNC and ICN estimates generated across the full range of data lengths (0.5-14 min) more reliably matched those generated from the first 5 min of scan time than those generated from the last 5 min, suggesting increased influence of "late scan" noise factors such as fatigue or drowsiness may limit the reliability of FNC from data collected after 10+ min of scan time, further supporting the notion of shorter scans. Lastly, a diagnostic classification model trained on just 2 min of data retained 97%-98% classification accuracy relative to that of the full-length reference model. Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2-5 min show good clinical utility without significant loss of individual FNC information of longer scan lengths.

摘要

静息态功能网络连接 (rsFNC) 已被证明可用于识别精神和情绪障碍个体的特征性功能脑模式,为生物标志物的开发提供了有前途的途径。然而,有几个因素阻碍了 rsFNC 诊断的广泛临床应用,即缺乏在个体之间捕获可比且可重复的成像标志物的标准化方法,以及在稳健地检测个体水平的固有连接网络 (ICN) 和与 rsFNC 相关的诊断模式所需的数据量上存在分歧。最近,空间约束独立成分分析 (scICA) 已被提议作为一种自动方法,用于提取标准化到所选网络模板的 ICN,同时仍保留个体差异。利用解决了标准化神经影像学标志物的前一个挑战的 scICA 方法,我们研究了在个体静息态 fMRI(rsfMRI) 临床应用中确定最小足够数据长度的后一个挑战。使用包含精神分裂症个体和对照者(rsfMRI 扫描的数据集 (M = 310) 以及模拟 rsfMRI,我们评估了 ICN 和 rsFNC 估计在个体和组水平上的稳健性,以及诊断分类的性能,具体取决于 rsfMRI 时程的长度。我们发现,从全长 (5 分钟) 参考时程获得的个体 ICN 和 rsFNC 估计值仅用 3-3.5 分钟的数据即可充分近似(r=0.85,0.88),并且在更少的数据(仅 2 分钟)中就可以充分近似组平均 rsFNC 的显著差异(r=0.86)。来自较短临床数据的这些结果与使用来自模拟 (30 分钟) 和真实世界 (14 分钟) 数据集的更长时间序列进行验证实验的结果基本一致,其中主体水平 FNC 的估计值可以可靠地用 3-5 分钟的数据进行估计。此外,在真实世界的数据中,我们发现 rsFNC 和 ICN 估计值在全数据长度范围内(0.5-14 分钟)生成的与从扫描时间的前 5 分钟生成的更匹配,而不是从扫描时间的最后 5 分钟生成的更匹配,这表明“晚期扫描”噪声因素的影响可能会限制在 10 分钟以上的扫描时间收集的数据中进行功能连接的可靠性,进一步支持较短扫描的观点。最后,仅使用 2 分钟的数据训练的诊断分类模型保留了与全长参考模型相比 97%-98%的分类准确性。我们的结果表明,当使用 scICA 进行分解时,仅 2-5 分钟的 rsfMRI 扫描即可显示出良好的临床效用,而不会对较长扫描长度的个体 FNC 信息造成显著损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5182/10028646/6f98f37cfd91/HBM-44-2620-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验