Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
J Immunother Cancer. 2024 Jul 1;12(7):e008970. doi: 10.1136/jitc-2024-008970.
Despite advances in checkpoint inhibitor (CPI) therapy for cancer treatment, many cancers remain resistant. Tumors deemed "cold" based on lack of T cell infiltration show reduced potential for CPI therapy. Cancer vaccines may overcome the inadequacy of existing T cells by inducing the needed antitumor T cell response to synergize with CPIs and overcome resistance.
CT26 and TC1 tumor cells were injected subcutaneously into mice. Mice were treated with combinations of CPIs alone or a cancer vaccine specific to the tumor antigen E7 present in TC1 cells. CPIs for the TC1 model were selected because of immunophenotyping TC1 tumors. Antitumor and protumor immunity, tumor size and survival, sequence and timing of vaccine and CPI administration, and efficacy of treatment in young and aged mice were probed.
While "hot" CT26 tumors are treatable with combinations of second-generation CPIs alone or with anti-TGFβ, "cold" TC1 tumor reduction requires the synergy of a tumor-antigen-specific vaccine in combination with two CPIs, anti-TIGIT and anti-PD-L1, predicted by tumor microenvironment (TME) characterization. The synergistic triple combination delays tumor growth better than any pairwise combination and improves survival in a CD8+T cell-dependent manner. Depletion of CD4+T cells improved the treatment response, and depleting regulatory T cells (Treg) revealed Tregs to be inhibiting the response as also predicted from TME analysis. We found the sequence of CPI and vaccine administration dictates the success of the treatment, and the triple combination administered concurrently induces the highest E7-specific T cell response. Contrary to young mice, in aged mice, the cancer vaccine alone is ineffective, requiring the CPIs to delay tumor growth.
These findings show how pre-existing or vaccine-mediated de novo T cell responses can both be amplified by and facilitate synergistic CPIs and Treg depletion that together lead to greater survival, and how analysis of the TME can help rationally design combination therapies and precision medicine to enhance clinical response to CPI and cancer vaccine therapy.
尽管癌症治疗中的检查点抑制剂(CPI)疗法取得了进展,但许多癌症仍然存在耐药性。根据缺乏 T 细胞浸润而被认为“冷”的肿瘤显示出对 CPI 治疗的潜力降低。癌症疫苗可以通过诱导对肿瘤抗原 E7 的所需抗肿瘤 T 细胞反应,与 CPIs 协同作用并克服耐药性,从而克服现有 T 细胞的不足。
将 CT26 和 TC1 肿瘤细胞皮下注射到小鼠中。用单独的 CPIs 或针对 TC1 细胞中存在的肿瘤抗原 E7 的癌症疫苗的组合治疗小鼠。选择 TC1 模型的 CPIs 是因为 TC1 肿瘤的免疫表型。研究了抗肿瘤和促肿瘤免疫、肿瘤大小和生存、疫苗和 CPI 给药的顺序和时间以及在年轻和老年小鼠中的治疗效果。
虽然“热”CT26 肿瘤可以用第二代 CPIs 单独或与抗 TGFβ 联合治疗,但“冷”TC1 肿瘤的减少需要肿瘤抗原特异性疫苗与两种 CPIs(抗 TIGIT 和抗 PD-L1)的协同作用,这是通过肿瘤微环境(TME)特征化预测的。协同的三联组合比任何两两组合都能更好地延迟肿瘤生长,并以 CD8+T 细胞依赖的方式提高生存率。耗尽 CD4+T 细胞可改善治疗反应,而耗尽调节性 T 细胞(Treg)则揭示 Treg 如 TME 分析所预测的那样抑制反应。我们发现 CPI 和疫苗给药的顺序决定了治疗的成功,并且同时给予三联组合可诱导最高的 E7 特异性 T 细胞反应。与年轻小鼠相反,在老年小鼠中,单独使用癌症疫苗无效,需要 CPIs 来延迟肿瘤生长。
这些发现表明了如何通过协同的 CPIs 和 Treg 耗竭来放大预先存在的或疫苗介导的新的 T 细胞反应,从而共同导致更高的生存率,以及如何分析 TME 可以帮助合理设计联合治疗和精准医学,以增强对 CPI 和癌症疫苗治疗的临床反应。