Department of Drug Delivery, Helmholtz Center for Infection Research, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus E8 1, Saarbrücken 66123, Germany.
Saarland University, Saarbrücken 66123, Germany.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):4947-4957. doi: 10.1021/acsbiomaterials.4c00570. Epub 2024 Jul 3.
Hair follicle-penetrating nanoparticles offer a promising avenue for targeted antibiotic delivery, especially in challenging infections like acne inversa or folliculitis decalvans. However, demonstrating their efficacy with existing preclinical models remains difficult. This study presents an innovative approach using a 3D organ culture system with human hair follicles to investigate the hypothesis that antibiotic nanocarriers may reach bacteria within the follicular cleft more effectively than free drugs. Living human hair follicles were transplanted into a collagen matrix within a 3D printed polymer scaffold to replicate the follicle's microenvironment. Hair growth kinetics over 7 days resembled those of simple floating cultures. In the 3D model, fluorescent nanoparticles exhibited some penetration into the follicle, not observed in floating cultures. bacteria displayed similar distribution profiles postinfection of follicles. While rifampicin-loaded lipid nanocapsules were as effective as free rifampicin in floating cultures, only nanoencapsulated rifampicin achieved the same reduction of CFU/mL in the 3D model. This underscores the hair follicle microenvironment's critical role in limiting conventional antibiotic treatment efficacy. By mimicking this microenvironment, the 3D model demonstrates the advantage of topically administered nanocarriers for targeted antibiotic therapy against follicular infections.
毛囊穿透纳米颗粒为靶向抗生素递送提供了有前途的途径,特别是在治疗粉刺性穿通性毛囊炎或脱发性毛囊炎等具有挑战性的感染方面。然而,使用现有的临床前模型来证明其疗效仍然具有挑战性。本研究采用了一种具有人类毛囊的 3D 器官培养系统的创新方法,来研究以下假设,即抗生素纳米载体可能比游离药物更有效地到达毛囊内的滤泡间隙中的细菌。将活的人类毛囊移植到 3D 打印聚合物支架内的胶原基质中,以模拟毛囊的微环境。7 天内的毛发生长动力学与简单的漂浮培养相似。在 3D 模型中,荧光纳米颗粒显示出一些穿透到毛囊中,而在漂浮培养中则没有观察到。细菌在感染毛囊后的分布模式相似。虽然载有利福平的脂质纳米胶囊在漂浮培养中与游离利福平一样有效,但只有纳米封装的利福平在 3D 模型中实现了相同的 CFU/mL 减少。这凸显了毛囊微环境在限制传统抗生素治疗效果方面的关键作用。通过模拟这种微环境,3D 模型展示了局部给予纳米载体用于针对滤泡感染的靶向抗生素治疗的优势。