文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二咖啡酰奎宁酸的抗糖尿病作用与肠道微生物群和胆汁酸代谢的调节有关。

Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism.

作者信息

Huang Yujie, Xu Weiqi, Dong Wei, Chen Guijie, Sun Yi, Zeng Xiaoxiong

机构信息

College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China.

College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.

出版信息

J Adv Res. 2025 Jun;72:17-35. doi: 10.1016/j.jare.2024.06.027. Epub 2024 Jul 3.


DOI:10.1016/j.jare.2024.06.027
PMID:38969095
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12147647/
Abstract

INTRODUCTION: The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS: The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS: Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3β) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION: Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.

摘要

引言:人类肠道微生物群在健康和疾病中起着关键作用,特别是通过其与胆汁酸(BAs)的相互作用。胆汁酸在肝脏中合成,排泄到肠道后会被肠道微生物群转化,从而影响宿主代谢。然而,苦丁茶中的二咖啡酰奎宁酸(DiCQAs)如何通过肠道微生物群调节脂质代谢和炎症的潜在机制仍不清楚。 目的和方法:本研究的目的是探讨DiCQAs对糖尿病的调节作用及其潜在作用机制。利用两种小鼠模型研究DiCQAs的抗糖尿病作用。此外,在检测DiCQAs对携带胆汁盐水解酶(BSH)基因的肠道微生物群的影响以及对胆汁酸肝肠循环和相关信号通路的同时,对肠道微生物群的结构和功能进行了分析。 结果:我们的研究结果表明,DiCQAs通过调节携带BSH基因的肠道微生物群来减轻糖尿病症状。这种调节增强了肠道屏障的完整性,增加了结合胆汁酸的肝肠循环,并抑制了回肠中的法尼醇X受体-成纤维细胞生长因子15(FGF15)信号轴。因此,肝脏成纤维细胞生长因子受体4(FGFR4)的蛋白表达下降,同时胆汁酸合成增加,肝脏胆汁酸淤积减少,肝脏和血浆胆固醇水平降低。此外,DiCQAs上调了肝脏和肌肉中与糖脂代谢相关的蛋白质,包括v-akt小鼠胸腺瘤病毒癌基因同源物(AKT)/糖原合酶激酶3-β(GSK3β)和AMP激活蛋白激酶(AMPK),从而通过下调糖尿病组中的丝裂原活化蛋白激酶(MAPK)信号通路来改善高血糖和减轻炎症。 结论:我们的研究阐明了苦丁茶中DiCQAs的抗糖尿病作用及其机制,突出了以肠道微生物群为靶点,特别是携带BSH基因的醋酸杆菌属sp011959105和醋酸杆菌属小鼠作为一种治疗策略来减弱FXR-FGF15信号并改善糖尿病的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/47a56f7b900d/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/6eb725e1fc2a/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/9d9edfbf19b4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/605f27c4cabc/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/f437d6d7e7e3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/125ef13e4e17/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/a8b1179d152e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/f05a8a20beea/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/d2a52fe18aed/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/aa50006ea08b/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/c18b43939a14/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/47a56f7b900d/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/6eb725e1fc2a/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/9d9edfbf19b4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/605f27c4cabc/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/f437d6d7e7e3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/125ef13e4e17/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/a8b1179d152e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/f05a8a20beea/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/d2a52fe18aed/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/aa50006ea08b/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/c18b43939a14/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3914/12147647/47a56f7b900d/gr10.jpg

相似文献

[1]
Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism.

J Adv Res. 2025-6

[2]
Sanye tablet regulates gut microbiota and bile acid metabolism to attenuate hepatic steatosis.

J Ethnopharmacol. 2025-4-9

[3]
Effects of Dicaffeoylquinic Acids from Ilex kudingcha on Lipid Metabolism and Intestinal Microbiota in High-Fat-Diet-Fed Mice.

J Agric Food Chem. 2018-12-31

[4]
Yellow tea polysaccharides protect against non-alcoholic fatty liver disease via regulation of gut microbiota and bile acid metabolism in mice.

Phytomedicine. 2024-10

[5]
LZys1 modulates gut microbiota, diminishes ileal FXR-FGF15 signaling, and regulates hepatic function.

Microbiol Spectr. 2025-6-3

[6]
Inhibition of Farnesoid-x-receptor signaling during abdominal sepsis by dysbiosis exacerbates gut barrier dysfunction.

Cell Commun Signal. 2025-5-21

[7]
Caffeoylquinic acids from Silphium perfoliatum L. show hepatoprotective effects on cholestatic mice by regulating enterohepatic circulation of bile acids.

J Ethnopharmacol. 2025-1-30

[8]
Activation of gut FXR improves the metabolism of bile acids, intestinal barrier, and microbiota under cholestatic condition caused by GCDCA in mice.

Microbiol Spectr. 2025-4

[9]
Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism.

Nat Commun. 2019-10-31

[10]
Penthorum chinense Pursh. extract attenuates non-alcholic fatty liver disease by regulating gut microbiota and bile acid metabolism in mice.

J Ethnopharmacol. 2022-8-10

引用本文的文献

[1]
Totum-448 Improves MASLD and Modulates Microbiota in Hamsters: Dose-Response Study and Effects of Supplementation Cessation.

Food Sci Nutr. 2025-9-2

[2]
Novel Approaches in Glucose and Lipid Metabolism Disorder Therapy: Targeting the Gut Microbiota-Bile Acid Axis.

Biology (Basel). 2025-7-2

[3]
Prebiotic Effect of Oxidized Hydroxypropyl Starch via In Vitro and In Vivo.

Foods. 2025-6-24

[4]
Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5.

Int J Mol Sci. 2025-4-29

[5]
Hyodeoxycholic acid inhibits colorectal cancer proliferation through the FXR/EREG/EGFR axis.

Front Cell Dev Biol. 2025-1-6

[6]
Multi-omics reveals the alleviating effect of berberine on ulcerative colitis through modulating the gut microbiome and bile acid metabolism in the gut-liver axis.

Front Pharmacol. 2024-10-24

本文引用的文献

[1]
Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders.

Adv Sci (Weinh). 2024-5

[2]
Morphine and high-fat diet differentially alter the gut microbiota composition and metabolic function in lean versus obese mice.

ISME Commun. 2022-8-5

[3]
FGF19 induces the cell cycle arrest at G2-phase in chondrocytes.

Cell Death Discov. 2023-7-15

[4]
Dietary Isoquercetin Reduces Hepatic Cholesterol and Triglyceride in NAFLD Mice by Modulating Bile Acid Metabolism via Intestinal FXR-FGF15 Signaling.

J Agric Food Chem. 2023-5-24

[5]
Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut.

Nat Microbiol. 2023-4

[6]
Genome-centric investigation of bile acid metabolizing microbiota of dairy cows and associated diet-induced functional implications.

ISME J. 2023-1

[7]
The effect of tai chi intervention on NLRP3 and its related antiviral inflammatory factors in the serum of patients with pre-diabetes.

Front Immunol. 2022

[8]
Gut Microbiota Changes by an SGLT2 Inhibitor, Luseogliflozin, Alters Metabolites Compared with Those in a Low Carbohydrate Diet in db/db Mice.

Nutrients. 2022-8-27

[9]
Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota.

Nat Commun. 2022-8-18

[10]
Metabolic Messengers: bile acids.

Nat Metab. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索