Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.
Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain.
Hum Genet. 2024 Oct;143(9-10):1207-1221. doi: 10.1007/s00439-024-02684-z. Epub 2024 Jul 6.
An elevated resting heart rate (RHR) is associated with increased cardiovascular mortality. Genome-wide association studies (GWAS) have identified > 350 loci. Uniquely, in this study we applied genetic fine-mapping leveraging tissue specific chromatin segmentation and colocalization analyses to identify causal variants and candidate effector genes for RHR. We used RHR GWAS summary statistics from 388,237 individuals of European ancestry from UK Biobank and performed fine mapping using publicly available genomic annotation datasets. High-confidence causal variants (accounting for > 75% posterior probability) were identified, and we collated candidate effector genes using a multi-omics approach that combined evidence from colocalisation with molecular quantitative trait loci (QTLs), and long-range chromatin interaction analyses. Finally, we performed druggability analyses to investigate drug repurposing opportunities. The fine mapping pipeline indicated 442 distinct RHR signals. For 90 signals, a single variant was identified as a high-confidence causal variant, of which 22 were annotated as missense. In trait-relevant tissues, 39 signals colocalised with cis-expression QTLs (eQTLs), 3 with cis-protein QTLs (pQTLs), and 75 had promoter interactions via Hi-C. In total, 262 candidate genes were highlighted (79% had promoter interactions, 15% had a colocalised eQTL, 8% had a missense variant and 1% had a colocalised pQTL), and, for the first time, enrichment in nervous system pathways. Druggability analyses highlighted ACHE, CALCRL, MYT1 and TDP1 as potential targets. Our genetic fine-mapping pipeline prioritised 262 candidate genes for RHR that warrant further investigation in functional studies, and we provide potential therapeutic targets to reduce RHR and cardiovascular mortality.
静息心率升高与心血管死亡率增加有关。全基因组关联研究(GWAS)已经确定了超过 350 个位点。在这项研究中,我们应用遗传精细映射,利用组织特异性染色质分割和共定位分析来识别 RHR 的因果变异和候选效应基因,这是独一无二的。我们使用了来自 UK Biobank 的 388237 名欧洲血统个体的 RHR GWAS 汇总统计数据,并使用公开可用的基因组注释数据集进行精细映射。确定了高可信度的因果变异(占>75%的后验概率),我们使用多组学方法整理候选效应基因,该方法结合了共定位与分子数量性状基因座(QTL)和长程染色质相互作用分析的证据。最后,我们进行了药物可开发性分析,以研究药物再利用的机会。精细映射管道表明有 442 个不同的 RHR 信号。对于 90 个信号,确定了一个单一的变体作为高可信度的因果变体,其中 22 个被注释为错义。在与性状相关的组织中,39 个信号与顺式表达 QTL(eQTL)共定位,3 个与顺式蛋白 QTL(pQTL)共定位,75 个通过 Hi-C 具有启动子相互作用。总共突出了 262 个候选基因(79%具有启动子相互作用,15%具有共定位的 eQTL,8%具有错义变体,1%具有共定位的 pQTL),并且首次在神经系统途径中富集。药物可开发性分析突出了 ACHE、CALCRL、MYT1 和 TDP1 作为潜在的靶点。我们的遗传精细映射管道优先考虑了 262 个候选基因,这些基因在功能研究中值得进一步研究,并为降低 RHR 和心血管死亡率提供了潜在的治疗靶点。