文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多参数 MRI 的放射组学列线图预测宫颈癌淋巴管脉管间隙侵犯。

Multiparametric mri-based radiomics nomogram for predicting lymph-vascular space invasion in cervical cancer.

机构信息

Department of Magnetic Resonance Imaging, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou City, Hebei Province, 061001, China.

Department of Pathology, Cangzhou Central Hospital, Cangzhou City, 061001, Hebei Province, China.

出版信息

BMC Med Imaging. 2024 Jul 5;24(1):167. doi: 10.1186/s12880-024-01344-y.


DOI:10.1186/s12880-024-01344-y
PMID:38969972
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11225404/
Abstract

PURPOSE: To develop and validate a multiparametric magnetic resonance imaging (mpMRI)-based radiomics model for predicting lymph-vascular space invasion (LVSI) of cervical cancer (CC). METHODS: The data of 177 CC patients were retrospectively collected and randomly divided into the training cohort (n=123) and testing cohort (n = 54). All patients received preoperative MRI. Feature selection and radiomics model construction were performed using max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) on the training cohort. The models were established based on the extracted features. The optimal model was selected and combined with clinical independent risk factors to establish the radiomics fusion model and the nomogram. The diagnostic performance of the model was assessed by the area under the curve. RESULTS: Feature selection extracted the thirteen most important features for model construction. These radiomics features and one clinical characteristic were selected showed favorable discrimination between LVSI and non-LVSI groups. The AUCs of the radiomics nomogram and the mpMRI radiomics model were 0.838 and 0.835 in the training cohort, and 0.837 and 0.817 in the testing cohort. CONCLUSION: The nomogram model based on mpMRI radiomics has high diagnostic performance for preoperative prediction of LVSI in patients with CC.

摘要

目的:开发和验证一种基于多参数磁共振成像(mpMRI)的放射组学模型,用于预测宫颈癌(CC)的淋巴血管空间侵犯(LVSI)。

方法:回顾性收集了 177 例 CC 患者的数据,并将其随机分为训练队列(n=123)和测试队列(n=54)。所有患者均接受术前 MRI 检查。在训练队列中,使用最大相关性和最小冗余(mRMR)和最小绝对值收缩和选择算子(LASSO)进行特征选择和放射组学模型构建。基于提取的特征建立模型。选择最佳模型并结合临床独立危险因素,建立放射组学融合模型和列线图。通过曲线下面积评估模型的诊断性能。

结果:特征选择提取了 13 个用于模型构建的最重要特征。这些放射组学特征和一个临床特征的选择显示出对 LVSI 和非 LVSI 组的良好区分能力。在训练队列中,放射组学列线图和 mpMRI 放射组学模型的 AUC 分别为 0.838 和 0.835,在测试队列中分别为 0.837 和 0.817。

结论:基于 mpMRI 放射组学的列线图模型对预测 CC 患者术前 LVSI 具有较高的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/9e67aa5acf52/12880_2024_1344_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/769102f06e7d/12880_2024_1344_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/9d4b6cef2d8c/12880_2024_1344_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/27ac809b32ac/12880_2024_1344_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/810d72ee01fd/12880_2024_1344_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/505ac6ff13e5/12880_2024_1344_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/c70ca170dd56/12880_2024_1344_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/9e67aa5acf52/12880_2024_1344_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/769102f06e7d/12880_2024_1344_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/9d4b6cef2d8c/12880_2024_1344_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/27ac809b32ac/12880_2024_1344_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/810d72ee01fd/12880_2024_1344_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/505ac6ff13e5/12880_2024_1344_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/c70ca170dd56/12880_2024_1344_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/11225404/9e67aa5acf52/12880_2024_1344_Fig7_HTML.jpg

相似文献

[1]
Multiparametric mri-based radiomics nomogram for predicting lymph-vascular space invasion in cervical cancer.

BMC Med Imaging. 2024-7-5

[2]
MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively.

J Magn Reson Imaging. 2018-10-26

[3]
Multiparametric MRI radiomics nomogram for predicting lymph-vascular space invasion in early-stage cervical cancer.

Br J Radiol. 2022-6-1

[4]
Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymph Node Metastasis in Early-Stage Cervical Cancer.

J Magn Reson Imaging. 2020-9

[5]
Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymphovascular Space Invasion in Endometrial Carcinoma.

J Magn Reson Imaging. 2020-10

[6]
Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer.

Diagn Interv Radiol. 2022-7

[7]
A Multicenter Study on Preoperative Assessment of Lymphovascular Space Invasion in Early-Stage Cervical Cancer Based on Multimodal MR Radiomics.

J Magn Reson Imaging. 2023-11

[8]
Prediction of Lymphovascular Space Invision in Endometrial Cancer based on Multi-parameter MRI Radiomics Model.

Curr Med Imaging. 2024-3-19

[9]
Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer.

Eur Radiol. 2022-4

[10]
Feasibility of TWI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients.

Eur Radiol. 2021-9

引用本文的文献

[1]
Predicting lymphovascular space invasion in early-stage cervical squamous cell carcinoma using heart rate variability.

Front Oncol. 2025-7-21

[2]
Analysis of prognosis and related influencing factors of different surgical approaches for early cervical cancer.

J Cancer Res Clin Oncol. 2025-3-1

本文引用的文献

[1]
Chemotherapy versus chemoradiotherapy for FIGO stages IB1 and IIA1 cervical squamous cancer patients with lymphovascular space invasion: a retrospective study.

BMC Cancer. 2022-2-23

[2]
Multi-Parametric Magnetic Resonance Imaging-Based Radiomics Analysis of Cervical Cancer for Preoperative Prediction of Lymphovascular Space Invasion.

Front Oncol. 2022-1-12

[3]
Lymph Node Involvement in Early-Stage Cervical Cancer: Is Lymphangiogenesis a Risk Factor? Results from the MICROCOL Study.

Cancers (Basel). 2022-1-2

[4]
Preoperative Prediction of Lymphovascular Space Invasion in Cervical Cancer With Radiomics -Based Nomogram.

Front Oncol. 2021-7-12

[5]
Prediction of lymphovascular space invasion using a combination of tenascin-C, cox-2, and PET/CT radiomics in patients with early-stage cervical squamous cell carcinoma.

BMC Cancer. 2021-7-28

[6]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[7]
Validation of the 2018 FIGO Classification for Cervical Cancer: Lymphovascular Space Invasion Should Be Considered in IB1 Stage.

Cancers (Basel). 2020-11-28

[8]
A retrospective survey of influencing factors on patient survival without local recurrence and total survival in patients with early cervical cancer.

J Pak Med Assoc. 2020-9

[9]
Cervical cancer with ≤5 mm depth of invasion and >7 mm horizontal spread - Is lymph node assessment only required in patients with LVSI?

Gynecol Oncol. 2020-8

[10]
MRI Based Radiomics Approach With Deep Learning for Prediction of Vessel Invasion in Early-Stage Cervical Cancer.

IEEE/ACM Trans Comput Biol Bioinform. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索