Suppr超能文献

保守且重复的 motifs 在无规卷曲蛋白中驱动 ⍺-羧酶体的组装。

Conserved and repetitive motifs in an intrinsically disordered protein drive ⍺-carboxysome assembly.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.

出版信息

J Biol Chem. 2024 Aug;300(8):107532. doi: 10.1016/j.jbc.2024.107532. Epub 2024 Jul 4.

Abstract

All cyanobacteria and some chemoautotrophic bacteria fix CO into sugars using specialized proteinaceous compartments called carboxysomes. Carboxysomes enclose the enzymes Rubisco and carbonic anhydrase inside a layer of shell proteins to increase the CO concentration for efficient carbon fixation by Rubisco. In the ⍺-carboxysome lineage, a disordered and highly repetitive protein named CsoS2 is essential for carboxysome formation and function. Without it, the bacteria require high CO to grow. How does a protein predicted to be lacking structure serve as the architectural scaffold for such a vital cellular compartment? In this study, we identify key residues present in the repeats of CsoS2, VTG and Y, which are necessary for building functional ⍺-carboxysomes in vivo. These highly conserved and repetitive residues contribute to the multivalent binding interaction and phase separation behavior between CsoS2 and shell proteins. We also demonstrate 3-component reconstitution of CsoS2, Rubisco, and shell proteins into spherical condensates and show the utility of reconstitution as a biochemical tool to study carboxysome biogenesis. The precise self-assembly of thousands of proteins is crucial for carboxysome formation, and understanding this process could enable their use in alternative biological hosts or industrial processes as effective tools to fix carbon.

摘要

所有蓝藻和一些化能自养细菌都使用称为羧化体的特殊蛋白质隔室将 CO 固定为糖。羧化体将 Rubisco 和碳酸酐酶等酶封闭在一层外壳蛋白内,以增加 Rubisco 高效固定碳所需的 CO 浓度。在 α-羧化体谱系中,一种无序且高度重复的蛋白质 CsoS2 对于羧化体的形成和功能是必不可少的。没有它,细菌就需要高浓度的 CO 才能生长。那么,一种预测缺乏结构的蛋白质如何作为如此重要的细胞隔室的结构支架呢?在这项研究中,我们确定了 CsoS2、VTG 和 Y 重复序列中存在的关键残基,这些残基对于在体内构建功能性 α-羧化体是必需的。这些高度保守和重复的残基有助于 CsoS2 与外壳蛋白之间的多价结合相互作用和相分离行为。我们还展示了 CsoS2、Rubisco 和外壳蛋白的 3 组分重新组装成球形凝聚物,并展示了重新组装作为研究羧化体生物发生的生化工具的实用性。数千种蛋白质的精确自组装对于羧化体的形成至关重要,了解这个过程可以使它们在替代生物宿主或工业过程中作为有效的碳固定工具得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验