Suppr超能文献

面向医疗保健的隐私保护平台及其在鉴定念珠菌血症患者中的应用。

A privacy-preserving platform oriented medical healthcare and its application in identifying patients with candidemia.

机构信息

Peking Union Medical College Hospital (CAMS), Beijing, China.

Yidu Cloud Technology Company Ltd., Beijing, China.

出版信息

Sci Rep. 2024 Jul 6;14(1):15589. doi: 10.1038/s41598-024-66596-8.

Abstract

Federated learning (FL) has emerged as a significant method for developing machine learning models across multiple devices without centralized data collection. Candidemia, a critical but rare disease in ICUs, poses challenges in early detection and treatment. The goal of this study is to develop a privacy-preserving federated learning framework for predicting candidemia in ICU patients. This approach aims to enhance the accuracy of antifungal drug prescriptions and patient outcomes. This study involved the creation of four predictive FL models for candidemia using data from ICU patients across three hospitals in China. The models were designed to prioritize patient privacy while aggregating learnings across different sites. A unique ensemble feature selection strategy was implemented, combining the strengths of XGBoost's feature importance and statistical test p values. This strategy aimed to optimize the selection of relevant features for accurate predictions. The federated learning models demonstrated significant improvements over locally trained models, with a 9% increase in the area under the curve (AUC) and a 24% rise in true positive ratio (TPR). Notably, the FL models excelled in the combined TPR + TNR metric, which is critical for feature selection in candidemia prediction. The ensemble feature selection method proved more efficient than previous approaches, achieving comparable performance. The study successfully developed a set of federated learning models that significantly enhance the prediction of candidemia in ICU patients. By leveraging a novel feature selection method and maintaining patient privacy, the models provide a robust framework for improved clinical decision-making in the treatment of candidemia.

摘要

联邦学习(FL)已成为一种在多个设备上开发机器学习模型的重要方法,无需集中收集数据。ICU 中的念珠菌血症是一种严重但罕见的疾病,在早期检测和治疗方面存在挑战。本研究旨在开发一种用于预测 ICU 患者念珠菌血症的隐私保护联邦学习框架。该方法旨在提高抗真菌药物处方和患者预后的准确性。本研究涉及使用来自中国三家医院的 ICU 患者数据创建四个用于预测念珠菌血症的预测性联邦学习模型。这些模型旨在在聚合来自不同站点的学习成果的同时,优先考虑患者的隐私。实施了一种独特的集成特征选择策略,结合了 XGBoost 的特征重要性和统计检验 p 值的优势。该策略旨在优化用于准确预测的相关特征的选择。联邦学习模型在 AUC 增加 9%和真阳性率(TPR)增加 24%方面显著优于本地训练模型。值得注意的是,FL 模型在联合 TPR+TNR 指标方面表现出色,这对于念珠菌血症预测中的特征选择至关重要。集成特征选择方法证明比以前的方法更有效,达到了可比的性能。该研究成功开发了一组联邦学习模型,可显著提高 ICU 患者念珠菌血症的预测能力。通过利用新的特征选择方法和保护患者隐私,该模型为改善念珠菌血症治疗的临床决策提供了一个强大的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/11227531/a15e11b04617/41598_2024_66596_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验