Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006, Paris, France.
Institut Curie, PSL University, 75005, Paris, France.
Commun Biol. 2024 Jul 6;7(1):823. doi: 10.1038/s42003-024-06480-3.
Recent progress in image-based spatial RNA profiling enables to spatially resolve tens to hundreds of distinct RNA species with high spatial resolution. It presents new avenues for comprehending tissue organization. In this context, the ability to assign detected RNA transcripts to individual cells is crucial for downstream analyses, such as in-situ cell type calling. Yet, accurate cell segmentation can be challenging in tissue data, in particular in the absence of a high-quality membrane marker. To address this issue, we introduce ComSeg, a segmentation algorithm that operates directly on single RNA positions and that does not come with implicit or explicit priors on cell shape. ComSeg is applicable in complex tissues with arbitrary cell shapes. Through comprehensive evaluations on simulated and experimental datasets, we show that ComSeg outperforms existing state-of-the-art methods for in-situ single-cell RNA profiling and in-situ cell type calling. ComSeg is available as a documented and open source pip package at https://github.com/fish-quant/ComSeg .
基于图像的空间 RNA 分析技术的最新进展能够以高空间分辨率解析数十到数百种不同的 RNA 种类。它为理解组织提供了新的途径。在这种情况下,将检测到的 RNA 转录本分配给单个细胞的能力对于下游分析至关重要,例如原位细胞类型调用。然而,在组织数据中,准确的细胞分割可能具有挑战性,特别是在缺乏高质量膜标记物的情况下。为了解决这个问题,我们引入了 ComSeg,这是一种直接在单个 RNA 位置上运行的分割算法,并且对细胞形状没有隐含或显式的先验。ComSeg 适用于具有任意细胞形状的复杂组织。通过对模拟和实验数据集的全面评估,我们表明 ComSeg 在原位单细胞 RNA 分析和原位细胞类型调用方面优于现有的最先进方法。ComSeg 可在 https://github.com/fish-quant/ComSeg 上获得有文档记录的开源 pip 包。