Kumar Dayanand, Li Hanrui, Kumbhar Dhananjay D, Rajbhar Manoj Kumar, Das Uttam Kumar, Syed Abdul Momin, Melinte Georgian, El-Atab Nazek
Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
Nanomicro Lett. 2024 Jul 8;16(1):238. doi: 10.1007/s40820-024-01456-8.
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices, opening numerous opportunities across countless domains, including personalized healthcare and advanced robotics. Leveraging 3D integration, edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption. Here, we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications, including electroencephalogram (EEG)-based seizure prediction, electromyography (EMG)-based gesture recognition, and electrocardiogram (ECG)-based arrhythmia detection. With experiments on three biomedical datasets, we observe the classification accuracy improvement for the pretrained model with 2.93% on EEG, 4.90% on ECG, and 7.92% on EMG, respectively. The optical programming property of the device enables an ultra-low power (2.8 × 10 J) fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios. Moreover, the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions, making it promising for neuromorphic vision application. To display the benefits of these intricate synaptic properties, a 5 × 5 optoelectronic synapse array is developed, effectively simulating human visual perception and memory functions. The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.
物联网的出现预计将为所谓的智能边缘设备创造一个巨大的市场,在包括个性化医疗保健和先进机器人技术在内的无数领域带来众多机遇。借助3D集成技术,边缘设备可以实现前所未有的小型化,同时提高处理能力并降低能耗。在此,我们展示了一种后端兼容的光电突触,并将迁移学习方法应用于医疗保健应用,包括基于脑电图(EEG)的癫痫发作预测、基于肌电图(EMG)的手势识别以及基于心电图(ECG)的心律失常检测。通过对三个生物医学数据集进行实验,我们观察到预训练模型的分类准确率分别在脑电图上提高了2.93%,在心电图上提高了4.90%,在肌电图上提高了7.92%。该设备的光学编程特性实现了超低功耗(2.8×10焦耳)的微调过程,并为边缘计算场景中的特定患者问题提供了解决方案。此外,该设备展现出令人印象深刻的光敏特性,能够实现一系列光触发的突触功能,使其在神经形态视觉应用方面具有潜力。为了展示这些复杂突触特性的优势,我们开发了一个5×5的光电突触阵列,有效模拟了人类视觉感知和记忆功能。所提出的柔性光电突触在推进可穿戴应用中的神经形态生理信号处理和人工视觉系统领域具有巨大潜力。