Suppr超能文献

一种基于MoWS/VO异质结的用于视觉和呼吸功能的多模态湿度自适应光学神经元。

A Multimodal Humidity Adaptive Optical Neuron Based on a MoWS/VO Heterojunction for Vision and Respiratory Functions.

作者信息

Syed Abdul Momin, Kumbhar Dhananjay D, Li Hanrui, Rajbhar Manoj Kumar, Kumar Dayanand, Pal Pratibha, Wehbe Nimer, Hassine Mohamed Ben, El-Atab Nazek

机构信息

Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Core Labs, KAUST, Thuwal, 23955-6900, Saudi Arabia.

出版信息

Adv Mater. 2025 Jul;37(27):e2417793. doi: 10.1002/adma.202417793. Epub 2025 Apr 29.

Abstract

Advancements in computing have progressed from near-sensor to in-sensor computing, culminating in the development of multimodal in-memory computing, which enables faster, energy-efficient data processing by performing computations directly within the memory devices. A bio-inspired multimodal in-memory computing system capable of performing real-time low power processing of multisensory signals, lowering data conversion and transmission across several modules in conventional chips is introduced. A novel Cu/MoWS/VO/Pt based multimodal memristor is characterized by an ON/OFF ratio as high as 10 with consistent and ultralow operating voltages of ±0.2 surpassing conventional single-mode memory functions. Apart from observing electrical synaptic behavior, photonic depression and humidity mediated optical synaptic learning is also demonstrated. The heterojunction with MoWS also enables reconfigurable modulation in both memory and optical synaptic functionalities with changing humidity. This behavior provides tunable conductance modulation capabilities emulating synaptic transmission in biological neurons while showing potential in respiratory detection module for healthcare application. The humidity sensing capability is implemented to demonstrate vision clarity using a convolutional neural network (CNN), with different humidity levels applied as a data augmentation preprocessing method. This proposed multimodal functionality represents a novel platform for developing artificial sensory neurons, with significant implications for non-contact human-computer interaction in intelligent systems.

摘要

计算技术的进步已从近传感器计算发展到传感器内计算,最终促成了多模态内存计算的发展,这种计算方式通过在内存设备中直接执行计算,实现了更快、更节能的数据处理。本文介绍了一种受生物启发的多模态内存计算系统,该系统能够对多感官信号进行实时低功耗处理,减少了传统芯片中多个模块之间的数据转换和传输。一种新型的基于Cu/MoWS/VO/Pt的多模态忆阻器的开/关比高达10,其工作电压一致且超低,为±0.2伏,超越了传统的单模存储功能。除了观察电突触行为外,还展示了光子抑制和湿度介导的光学突触学习。与MoWS的异质结还能在湿度变化时对内存和光学突触功能进行可重构调制。这种行为提供了可调的电导调制能力,可模拟生物神经元中的突触传递,同时在医疗保健应用的呼吸检测模块中显示出潜力。利用卷积神经网络(CNN)实现了湿度传感能力,以展示视觉清晰度,并将不同的湿度水平用作数据增强预处理方法。这种提出的多模态功能代表了一个开发人工感觉神经元的新型平台,对智能系统中的非接触式人机交互具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ae/12243701/c1b1c2350ffe/ADMA-37-2417793-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验