Berger Romina, Rahtz Alina, Schweigerdt Alexander, Stöbener Daniel D, Cosimi Andrea, Dempwolf Wibke, Menzel Henning, Johannsmeier Sonja, Weinhart Marie
Leibniz Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstr. 3a, 30167, Hannover, Germany.
Laser Zentrum Hannover e.V., Life Science Department, Hollerithallee 8, 30419, Hannover, Germany.
Bioact Mater. 2025 Aug 13;54:86-102. doi: 10.1016/j.bioactmat.2025.07.052. eCollection 2025 Dec.
Polydimethylsiloxane (PDMS) is widely used in biomedical applications due to its biocompatibility, chemical stability, flexibility, and resistance to degradation in physiological environments. However, its intrinsic inertness limits further (bio)functionalization, and its hydrophobic recovery compromises the longevity of conventional surface modifications. To address these challenges, we developed a nanoprecipitation method for the straightforward colloidal deposition, covalent thermal crosslinking, and surface anchoring of a chemically tunable, biocompatible polyacrylamide with reactive hydroxyl groups, enabling further surface modifications. This polymer incorporates ∼6 % bioinspired catechol units, introduced via an elegant one-pot Kabachnik-Fields reaction, to facilitate thermally induced network formation and enhance adhesion to plasma-activated PDMS. The resulting uniform coatings exhibited tunable dry layer thicknesses up to 44 ± 7 nm and effectively suppressed PDMS chain rearrangement even after steam autoclaving, ensuring long-term stability in aqueous and ambient environments for at least 90 days. The bioactive post-modification potential was demonstrated in a proof-of-concept study by immobilizing the photosensitizer at surface concentrations of 20 or 40 μg cm. The coating exhibited antimicrobial activity against , achieving a 4-log reduction (99.99 %) in colony-forming units after 30 min of irradiation at 554 nm (342 J cm), even when bacteria were suspended in liquid, without direct surface contact. In contrast, antimicrobial activity against was only observed with minimized liquid volume, bringing the motile bacteria into close contact with the surface. This work established a straightforward and versatile strategy for the stable and bioactive functionalization of PDMS surfaces for application in non-invasive surface decontamination.
聚二甲基硅氧烷(PDMS)因其生物相容性、化学稳定性、柔韧性以及在生理环境中的抗降解性而被广泛应用于生物医学领域。然而,其固有的惰性限制了进一步的(生物)功能化,并且其疏水恢复特性会影响传统表面修饰的持久性。为了应对这些挑战,我们开发了一种纳米沉淀方法,用于直接进行胶体沉积、共价热交联以及对具有反应性羟基的化学可调、生物相容性聚丙烯酰胺进行表面锚定,从而实现进一步的表面修饰。这种聚合物通过一种巧妙的一锅法卡巴奇尼克-菲尔德反应引入了约6%的仿生儿茶酚单元,以促进热诱导网络形成并增强对等离子体活化PDMS的附着力。所得的均匀涂层具有高达44±7nm的可调干层厚度,即使在蒸汽高压灭菌后也能有效抑制PDMS链重排,确保在水性和环境条件下至少90天的长期稳定性。在一项概念验证研究中,通过以20或40μg/cm的表面浓度固定光敏剂,证明了生物活性后修饰的潜力。该涂层对[具体细菌名称1]表现出抗菌活性,在554nm(342J/cm)照射30分钟后,即使细菌悬浮在液体中且无直接表面接触,菌落形成单位也减少了4个对数(99.99%)。相比之下,仅在液体体积最小化以使运动细菌与表面紧密接触时,才观察到对[具体细菌名称2]的抗菌活性。这项工作为PDMS表面的稳定和生物活性功能化建立了一种直接且通用的策略,可用于非侵入性表面去污。