Suppr超能文献

感知的温暖和能力可以预测北美劳动力市场实验的回调率。

Perceived warmth and competence predict callback rates in meta-analyzed North American labor market experiments.

机构信息

Division of Humanities and Social Science, California Institute of Technology, Pasadena, CA, United States of America.

Computational Social Science, ETH Zurich, Zurich, Switzerland.

出版信息

PLoS One. 2024 Jul 10;19(7):e0304723. doi: 10.1371/journal.pone.0304723. eCollection 2024.

Abstract

Extensive literature probes labor market discrimination through correspondence studies in which researchers send pairs of resumes to employers, which are closely matched except for social signals such as gender or ethnicity. Upon perceiving these signals, individuals quickly activate associated stereotypes. The Stereotype Content Model (SCM; Fiske 2002) categorizes these stereotypes into two dimensions: warmth and competence. Our research integrates findings from correspondence studies with theories of social psychology, asking: Can discrimination between social groups, measured through employer callback disparities, be predicted by warmth and competence perceptions of social signals? We collect callback rates from 21 published correspondence studies, varying for 592 social signals. On those social signals, we collected warmth and competence perceptions from an independent group of online raters. We found that social perception predicts callback disparities for studies varying race and gender, which are indirectly signaled by names on these resumes. Yet, for studies adjusting other categories like sexuality and disability, the influence of social perception on callbacks is inconsistent. For instance, a more favorable perception of signals like parenthood does not consistently lead to increased callbacks, underscoring the necessity for further research. Our research offers pivotal strategies to address labor market discrimination in practice. Leveraging the warmth and competence framework allows for the predictive identification of bias against specific groups without extensive correspondence studies. By distilling hiring discrimination into these two dimensions, we not only facilitate the development of decision support systems for hiring managers but also equip computer scientists with a foundational framework for debiasing Large Language Models and other methods that are increasingly employed in hiring processes.

摘要

大量文献通过信函研究探讨了劳动力市场歧视问题,在这些研究中,研究人员向雇主发送一对简历,这些简历除了性别或种族等社会信号外,其他方面都非常匹配。一旦感知到这些信号,个体就会迅速激活与之相关的刻板印象。刻板印象内容模型(SCM;Fiske 2002)将这些刻板印象分为两个维度:温暖和能力。我们的研究整合了信函研究的发现和社会心理学理论,提出了一个问题:能否通过对社会信号的温暖和能力感知来预测雇主对社会群体的歧视程度,这种歧视程度可以通过回调率的差异来衡量?我们从 21 项已发表的信函研究中收集回调率,这些研究涉及 592 个社会信号。对于这些社会信号,我们从一组独立的在线评分者那里收集了温暖和能力的感知。我们发现,社会感知可以预测因种族和性别而产生的回调差异,这些差异是通过这些简历上的名字间接传递的。然而,对于调整了其他类别(如性取向和残疾)的研究,社会感知对回调的影响并不一致。例如,对像为人父母这样的信号有更有利的感知并不一定能导致回调增加,这突显了进一步研究的必要性。我们的研究为解决劳动力市场歧视问题提供了关键策略。利用温暖和能力框架可以在无需进行大量信函研究的情况下,预测特定群体的偏见。通过将招聘歧视归结为这两个维度,我们不仅为招聘经理提供了决策支持系统的开发策略,还为计算机科学家提供了一个基础框架,用于消除大型语言模型和其他在招聘过程中越来越多地使用的方法中的偏见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6203/11236140/b72be9376960/pone.0304723.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验