Suppr超能文献

DHAFormer:基于 Transformer 的双通道混合注意力网络用于息肉分割。

DHAFormer: Dual-channel hybrid attention network with transformer for polyp segmentation.

机构信息

School of Computer Science and Technology, Xinjiang University, Urumqi, China.

出版信息

PLoS One. 2024 Jul 10;19(7):e0306596. doi: 10.1371/journal.pone.0306596. eCollection 2024.

Abstract

The accurate early diagnosis of colorectal cancer significantly relies on the precise segmentation of polyps in medical images. Current convolution-based and transformer-based segmentation methods show promise but still struggle with the varied sizes and shapes of polyps and the often low contrast between polyps and their background. This research introduces an innovative approach to confronting the aforementioned challenges by proposing a Dual-Channel Hybrid Attention Network with Transformer (DHAFormer). Our proposed framework features a multi-scale channel fusion module, which excels at recognizing polyps across a spectrum of sizes and shapes. Additionally, the framework's dual-channel hybrid attention mechanism is innovatively conceived to reduce background interference and improve the foreground representation of polyp features by integrating local and global information. The DHAFormer demonstrates significant improvements in the task of polyp segmentation compared to currently established methodologies.

摘要

结直肠癌的准确早期诊断主要依赖于医学图像中息肉的精确分割。目前基于卷积和基于转换器的分割方法显示出了潜力,但仍然难以处理息肉的大小和形状差异,以及息肉与其背景之间的对比度通常较低的问题。本研究提出了一种新的方法,通过提出一种带有转换器的双通道混合注意力网络(DHAFormer)来应对上述挑战。我们提出的框架具有多尺度通道融合模块,擅长识别各种大小和形状的息肉。此外,该框架的双通道混合注意力机制通过整合局部和全局信息,创新性地设计用于减少背景干扰并提高息肉特征的前景表示,这一机制也取得了很好的效果。与现有的方法相比,DHAFormer 在息肉分割任务中取得了显著的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fd/11236112/7608beaed181/pone.0306596.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验