School of Computer Science and Technology, Xinjiang University, Urumqi, China.
PLoS One. 2024 Jul 10;19(7):e0306596. doi: 10.1371/journal.pone.0306596. eCollection 2024.
The accurate early diagnosis of colorectal cancer significantly relies on the precise segmentation of polyps in medical images. Current convolution-based and transformer-based segmentation methods show promise but still struggle with the varied sizes and shapes of polyps and the often low contrast between polyps and their background. This research introduces an innovative approach to confronting the aforementioned challenges by proposing a Dual-Channel Hybrid Attention Network with Transformer (DHAFormer). Our proposed framework features a multi-scale channel fusion module, which excels at recognizing polyps across a spectrum of sizes and shapes. Additionally, the framework's dual-channel hybrid attention mechanism is innovatively conceived to reduce background interference and improve the foreground representation of polyp features by integrating local and global information. The DHAFormer demonstrates significant improvements in the task of polyp segmentation compared to currently established methodologies.
结直肠癌的准确早期诊断主要依赖于医学图像中息肉的精确分割。目前基于卷积和基于转换器的分割方法显示出了潜力,但仍然难以处理息肉的大小和形状差异,以及息肉与其背景之间的对比度通常较低的问题。本研究提出了一种新的方法,通过提出一种带有转换器的双通道混合注意力网络(DHAFormer)来应对上述挑战。我们提出的框架具有多尺度通道融合模块,擅长识别各种大小和形状的息肉。此外,该框架的双通道混合注意力机制通过整合局部和全局信息,创新性地设计用于减少背景干扰并提高息肉特征的前景表示,这一机制也取得了很好的效果。与现有的方法相比,DHAFormer 在息肉分割任务中取得了显著的改进。