Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany.
Université Paris Cité, Paris 75015, France.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37545-37554. doi: 10.1021/acsami.4c06079. Epub 2024 Jul 10.
Successful therapeutic delivery of siRNA with polymeric nanoparticles seems to be a promising but not vastly understood and complicated goal to achieve. Despite years of research, no polymer-based delivery system has been approved for clinical use. Polymers, as a delivery system, exhibit considerable complexity and variability, making their consistent production a challenging endeavor. However, a better understanding of the polymerization process of polymer excipients may improve the reproducibility and material quality for more efficient use in drug products. Here, we present a combination of Design of Experiment and Python-scripted data science to establish a prediction model, from which important parameters can be extracted that influence the synthesis results of polybeta-amino esters (PBAEs), a common type of polymer used preclinically for nucleic acid delivery. We synthesized a library of 27 polymers, each one at different temperatures with different reaction times and educt ratios using an orthogonal central composite (CCO-) design. This design allowed a detailed characterization of factor importance and interactions using a very limited number of experiments. We characterized the polymers by analyzing the resulting composition by 1H-NMR and the size distribution by GPC measurements. To further understand the complex mechanism of block polymerization in a one-pot synthesis, we developed a Python script that helps us to understand possible step-growth steps. We successfully developed and validated a predictive response surface and gathered a deeper understanding of the synthesis of polyspermine-based amphiphilic PBAEs.
利用聚合物纳米粒成功地将 siRNA 递送到体内似乎是一个有前途但尚未被广泛理解和研究的复杂目标。尽管经过多年的研究,没有基于聚合物的递药系统被批准用于临床应用。作为递药系统的聚合物具有相当大的复杂性和可变性,因此其一致性生产是一项具有挑战性的工作。然而,更好地了解聚合物赋形剂的聚合过程可能会提高聚合过程的重现性和材料质量,从而更有效地用于药物产品。在这里,我们结合实验设计和 Python 脚本数据科学建立了一个预测模型,可以从中提取出影响聚β-氨基酸酯(PBAE)合成结果的重要参数,PBAE 是一种临床上常用的用于核酸递药的聚合物。我们使用正交中心复合(CCO-)设计合成了 27 种聚合物的文库,每种聚合物在不同温度下、不同反应时间和反应物比例下合成。这种设计允许使用非常有限的实验数量来详细表征因子的重要性和相互作用。我们通过 1H-NMR 分析得到的组成和 GPC 测量得到的分子量分布来表征聚合物。为了进一步了解一锅法合成中嵌段聚合的复杂机制,我们开发了一个 Python 脚本,帮助我们理解可能的逐步增长步骤。我们成功地开发并验证了一个预测响应面,并对多聚精氨酸基两亲性 PBAE 的合成有了更深入的了解。