Suppr超能文献

用因果关系图映射复杂的公共卫生问题。

Mapping complex public health problems with causal loop diagrams.

机构信息

Department of Public Health, Copenhagen Health Complexity Center, University of Copenhagen, Copenhagen, Denmark.

Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Int J Epidemiol. 2024 Jun 12;53(4). doi: 10.1093/ije/dyae091.

Abstract

This paper presents causal loop diagrams (CLDs) as tools for studying complex public health problems like health inequality. These problems often involve feedback loops-a characteristic of complex systems not fully integrated into mainstream epidemiology. CLDs are conceptual models that visualize connections between system variables. They are commonly developed through literature reviews or participatory methods with stakeholder groups. These diagrams often uncover feedback loops among variables across scales (e.g. biological, psychological and social), facilitating cross-disciplinary insights. We illustrate their use through a case example involving the feedback loop between sleep problems and depressive symptoms. We outline a typical step-by-step process for developing CLDs in epidemiology. These steps are defining a specific problem, identifying the key system variables involved, mapping these variables and analysing the CLD to find new insights and possible intervention targets. Throughout this process, we suggest triangulating between diverse sources of evidence, including domain knowledge, scientific literature and empirical data. CLDs can also be evaluated to guide policy changes and future research by revealing knowledge gaps. Finally, CLDs may be iteratively refined as new evidence emerges. We advocate for more widespread use of complex systems tools, like CLDs, in epidemiology to better understand and address complex public health problems.

摘要

本文提出因果回路图(CLD)作为研究健康不平等等复杂公共卫生问题的工具。这些问题通常涉及反馈回路——这是主流流行病学尚未完全纳入的复杂系统的一个特征。CLD 是可视化系统变量之间联系的概念模型。它们通常通过文献综述或与利益相关者群体的参与性方法开发。这些图通常揭示了跨尺度(例如生物、心理和社会)变量之间的反馈回路,促进了跨学科的见解。我们通过一个涉及睡眠问题和抑郁症状之间反馈回路的案例示例来说明它们的用途。我们概述了在流行病学中开发 CLD 的典型分步过程。这些步骤包括定义特定问题、确定涉及的关键系统变量、映射这些变量以及分析 CLD 以找到新的见解和可能的干预目标。在整个过程中,我们建议在不同来源的证据之间进行三角测量,包括领域知识、科学文献和经验数据。CLD 还可以通过揭示知识差距来评估,以指导政策变化和未来研究。最后,随着新证据的出现,CLD 可以迭代改进。我们主张在流行病学中更广泛地使用复杂系统工具,如 CLD,以更好地理解和解决复杂的公共卫生问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验