Witas Kamil, Nair Shruthi Santhosh, Maisuradze Tamar, Zedler Linda, Schmidt Heiner, Garcia-Porta Pablo, Rein Alexandra Stefanie Jessica, Bolter Tim, Rau Sven, Kupfer Stephan, Dietzek-Ivanšić Benjamin, Sorsche Dieter U
Institute for Inorganic Chemistry 1, Ulm University (UUlm), Albert-Einstein-Allee 11, Ulm 89081, Germany.
Research Department Functional Interfaces, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena 07745, Germany.
J Am Chem Soc. 2024 Jul 24;146(29):19710-19719. doi: 10.1021/jacs.4c00552. Epub 2024 Jul 11.
Molecular transition metal chromophores play a central role in light harvesting and energy conversion. Recently, earth-abundant transition-metal-based chromophores have begun to challenge the dominance of platinum group metal complexes in this area. However, the development of new chromophores with optimized photophysical properties is still limited by a lack of synthetic methods, especially with respect to heteroleptic complexes with functional ligands. Here, we demonstrate a facile and efficient method for the combination of strong-field carbenes with the functional 2,2'-bibenzimidazole ligand in a heteroleptic iron(II) chromophore complex. Our approach yields two isomers that differ predominantly in their excited-state lifetimes based on the symmetry of the ligand field. Deprotonation of both isomers leads to a significant red-shift of the metal-to-ligand charge transfer (MLCT) absorption and a shortening of excited-state lifetimes. Femtosecond transient absorption spectroscopy in combination with quantum chemical simulations and resonance Raman spectroscopy reveals the complex relationship between protonation and photophysical properties. Protonation is found to tip the balance between MLCT and metal-centered (MC) excited states in favor of the former. This study showcases the first example of fine-tuning of the excited-state landscape in an iron(II) chromophore through second-sphere manipulations and provides a new perspective to the challenge of excited-state optimizations in 3d transition metal chromophores.
分子过渡金属发色团在光捕获和能量转换中起着核心作用。最近,储量丰富的基于过渡金属的发色团已开始挑战铂族金属配合物在该领域的主导地位。然而,由于缺乏合成方法,特别是对于具有功能配体的异质配合物,具有优化光物理性质的新型发色团的开发仍然受到限制。在此,我们展示了一种简便有效的方法,用于在异质铁(II)发色团配合物中将强场卡宾与功能性2,2'-联苯并咪唑配体结合。我们的方法产生了两种异构体,它们主要基于配体场的对称性在激发态寿命上有所不同。两种异构体的去质子化都会导致金属到配体电荷转移(MLCT)吸收的显著红移和激发态寿命的缩短。飞秒瞬态吸收光谱结合量子化学模拟和共振拉曼光谱揭示了质子化与光物理性质之间的复杂关系。发现质子化使MLCT和以金属为中心(MC)的激发态之间的平衡倾向于前者。这项研究展示了通过二级球操纵对铁(II)发色团的激发态势能进行微调的首个实例,并为3d过渡金属发色团中激发态优化的挑战提供了新的视角。