Suppr超能文献

CT影像组学联合临床及影像学因素预测高血压性脑出血的血肿扩大。

CT radiomics combined with clinical and radiological factors predict hematoma expansion in hypertensive intracerebral hemorrhage.

作者信息

Yu Fei, Yang Mingguang, He Cheng, Yang Yanli, Peng Ying, Yang Hua, Lu Hong, Liu Heng

机构信息

Department of Radiology, Affiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi, China.

Department of Medical Imaging, Chongqing Emergency Medical Center, Chongqing University Central Hospital, The Fourth People's Hospital of Chongqing, Chongqing, China.

出版信息

Eur Radiol. 2025 Jan;35(1):6-19. doi: 10.1007/s00330-024-10921-2. Epub 2024 Jul 11.

Abstract

OBJECTIVES

This study aimed to establish a hematoma expansion (HE) prediction model for hypertensive intracerebral hemorrhage (HICH) patients by combining CT radiomics, clinical information, and conventional imaging signs.

METHODS

A retrospective continuous collection of HICH patients from three medical centers was divided into a training set (n = 555), a validation set (n = 239), and a test set (n = 77). Extract radiomics features from baseline CT plain scan images and combine them with clinical information and conventional imaging signs to construct radiomics models, clinical imaging sign models, and hybrid models, respectively. The models will be evaluated using the area under the curve (AUC), clinical decision curve analysis (DCA), net reclassification index (NRI), and integrated discrimination improvement (IDI).

RESULTS

In the training, validation, and testing sets, the radiomics model predicts an AUC of HE of 0.885, 0.827, and 0.894, respectively, while the clinical imaging sign model predicts an AUC of HE of 0.759, 0.725, and 0.765, respectively. Glasgow coma scale score at admission, first CT hematoma volume, irregular hematoma shape, and radiomics score were used to construct a hybrid model, with AUCs of 0.901, 0.838, and 0.917, respectively. The DCA shows that the hybrid model had the highest net profit rate. Compared with the radiomics model and the clinical imaging sign model, the hybrid model showed an increase in NRI and IDI.

CONCLUSION

The hybrid model based on CT radiomics combined with clinical and radiological factors can effectively individualize the evaluation of the risk of HE in patients with HICH.

CLINICAL RELEVANCE STATEMENT

CT radiomics combined with clinical information and conventional imaging signs can identify HICH patients with a high risk of HE and provide a basis for clinical-targeted treatment.

KEY POINTS

HE is an important prognostic factor in patients with HICH. The hybrid model predicted HE with training, validation, and test AUCs of 0.901, 0.838, and 0.917, respectively. This model provides a tool for a personalized clinical assessment of early HE risk.

摘要

目的

本研究旨在通过结合CT影像组学、临床信息和传统影像征象,建立高血压性脑出血(HICH)患者血肿扩大(HE)预测模型。

方法

对来自三个医疗中心的HICH患者进行回顾性连续收集,分为训练集(n = 555)、验证集(n = 239)和测试集(n = 77)。从基线CT平扫图像中提取影像组学特征,并将其分别与临床信息和传统影像征象相结合,构建影像组学模型、临床影像征象模型和混合模型。使用曲线下面积(AUC)、临床决策曲线分析(DCA)、净重新分类指数(NRI)和综合鉴别改善(IDI)对模型进行评估。

结果

在训练集、验证集和测试集中,影像组学模型预测HE的AUC分别为0.885、0.827和0.894,而临床影像征象模型预测HE的AUC分别为0.759、0.725和0.765。使用入院时格拉斯哥昏迷量表评分、首次CT血肿体积、血肿形状不规则和影像组学评分构建混合模型,其AUC分别为0.901、0.838和0.917。DCA显示混合模型的净利润率最高。与影像组学模型和临床影像征象模型相比,混合模型的NRI和IDI有所增加。

结论

基于CT影像组学结合临床和放射学因素的混合模型能够有效地个体化评估HICH患者发生HE的风险。

临床相关性声明

CT影像组学结合临床信息和传统影像征象可以识别具有高HE风险的HICH患者,并为临床靶向治疗提供依据。

关键点

HE是HICH患者的重要预后因素。混合模型预测HE的训练集、验证集和测试集AUC分别为0.901、0.838和0.917。该模型为早期HE风险的个性化临床评估提供了一种工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7bb/11632042/d4c3aaa40f29/330_2024_10921_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验