IEEE J Biomed Health Inform. 2024 Oct;28(10):6212-6224. doi: 10.1109/JBHI.2024.3422673. Epub 2024 Oct 3.
Predicting potential side effects of drug-drug interactions (DDIs), which is a major concern in clinical treatment, can increase therapeutic efficacy. In recent studies, how to use the multi-modal drug features is important for DDI prediction. Thus, it remains a challenge to explore an efficient computational method to achieve the feature fusion cross- and intra-modality. In this paper, we propose a dual-modality complex-valued fusion method (DMCF-DDI) for predicting the side effects of DDIs, using the form and properties of complex-vector to enhance the representations of DDIs. Firstly, DMCF-DDI applies two Graph Convolutional Network (GCN) encoders to learn molecular structure and topological features from fingerprint and knowledge graphs, respectively. Secondly, an asymmetric skip connection (ASC) uses distinct semantic-level features to construct the complex-valued drug pair representations (DPRs). Then, the complex-vector multiplication is used as a fusion operator to obtain the fine-grained DPRs. Finally, we calculate the prediction probability of DDIs by Hermitian inner product in the complex space. Compared with other methods, DMCF-DDI achieves superior performance in all situations using a fusion operator with the lowest parameter numbers. For the case study, we select six diseases and common side effects in clinical treatment to verify identification ability of our model. We also prove the advantage of ASC and complex-valued fusion can achieve to align the cross-modal fused positive DPRs through a comprehensive analysis on the phase-modulus distribution histogram of DPRs. In the end, we explain the reason for alignment based on the similarity of features and node neighbors.
预测药物-药物相互作用(DDI)的潜在副作用是临床治疗中的一个主要关注点,可以提高治疗效果。在最近的研究中,如何利用多模态药物特征对于 DDI 预测至关重要。因此,探索一种有效的计算方法来实现跨模态和模态内的特征融合仍然是一个挑战。在本文中,我们提出了一种用于预测 DDI 副作用的双模态复值融合方法(DMCF-DDI),利用复向量的形式和性质增强 DDI 的表示。首先,DMCF-DDI 使用两个图卷积网络(GCN)编码器分别从指纹和知识图谱中学习分子结构和拓扑特征。其次,不对称跳过连接(ASC)使用不同的语义级特征来构建复值药物对表示(DPRs)。然后,使用复向量乘法作为融合算子来获得细粒度的 DPRs。最后,我们在复空间中通过 Hermitian 内积计算 DDI 的预测概率。与其他方法相比,DMCF-DDI 在使用参数数量最少的融合算子的所有情况下都表现出了优越的性能。在案例研究中,我们选择了六种疾病和临床治疗中的常见副作用来验证我们模型的识别能力。我们还通过对 DPRs 的相-模分布直方图进行全面分析,证明了 ASC 和复值融合的优势可以实现对齐跨模态融合的正 DPRs。最后,我们基于特征和节点邻居的相似性解释了对齐的原因。