Suppr超能文献

钠滴促进的二硫化钼生长动力学和机制的实时观测

Real-Time Observation for MoS Growth Kinetics and Mechanism Promoted by the Na Droplet.

作者信息

Oh Jehyun, Park Minsuk, Kang Yoonbeen, Ju Sang-Yong

机构信息

Department of Chemistry, Yonsei University, Seodaemun-Gu, Seoul 03722, Republic of Korea.

出版信息

ACS Nano. 2024 Jul 23;18(29):19314-19323. doi: 10.1021/acsnano.4c05586. Epub 2024 Jul 13.

Abstract

While the molten salt-catalyzed chemical vapor deposition (CVD) technique is recognized for its effectiveness in producing large-area transition metal chalcogenides, understanding their growth mechanisms involving alkali metals remains a challenge. Here, we investigate the kinetics and mechanism of sodium-catalyzed molybdenum disulfide (MoS) growth and etching through image analysis conducted using an integrated CVD microscope. Sodium droplets, agglomerated via the thermal decomposition of the sodium cholate dispersant, catalyze the precipitation of supersaturated MoS laminates and induce growth despite fragmentation during this process. Triangular MoS crystals display a distinct self-exhausting exponential behavior and slow growth of thermodynamically favorable crystallographic faces, exhibiting a sulfur-dominant pressure. The growth and etching processes are facilitated by the scooting of sodium droplets along grain edges, displaying comparable rates. Leveraging these kinetics makes it possible to engineer atypical MoS shapes. This combined microscope not only enhances the understanding of growth mechanisms but also contributes to the facile development of next-generation nanomaterials.

摘要

虽然熔盐催化化学气相沉积(CVD)技术因其在制备大面积过渡金属硫属化物方面的有效性而得到认可,但了解其涉及碱金属的生长机制仍然是一项挑战。在此,我们通过使用集成CVD显微镜进行图像分析,研究了钠催化二硫化钼(MoS)生长和蚀刻的动力学及机制。通过胆酸钠分散剂的热分解而团聚的钠滴,催化过饱和MoS层压板的沉淀,并在此过程中尽管发生破碎仍诱导生长。三角形MoS晶体呈现出独特的自耗尽指数行为以及热力学上有利的晶面的缓慢生长,表现出硫主导的压力。钠滴沿晶粒边缘的移动促进了生长和蚀刻过程,显示出相当的速率。利用这些动力学可以设计出非典型的MoS形状。这种组合显微镜不仅增强了对生长机制的理解,也有助于下一代纳米材料的便捷开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验