Suppr超能文献

老年人运动认知风险综合征风险预测模型的建立与验证。

Development and validation of a risk prediction model for motoric cognitive risk syndrome in older adults.

机构信息

School of Nursing, Jinan University, Guangzhou, Guangdong Province, China.

The Community Service Center of Jinan University, The First Affiliated Hospital of Jinan University, Tianhe District, Guangzhou, Guangzhou Province, China.

出版信息

Aging Clin Exp Res. 2024 Jul 13;36(1):143. doi: 10.1007/s40520-024-02797-5.

Abstract

OBJECTIVE

The objective of this study was to develop a risk prediction model for motoric cognitive risk syndrome (MCR) in older adults.

METHODS

Participants were selected from the 2015 China Health and Retirement Longitudinal Study database and randomly assigned to the training group and the validation group, with proportions of 70% and 30%, respectively. LASSO regression analysis was used to screen the predictors. Then, identified predictors were included in multivariate logistic regression analysis and used to construct model nomogram. The performance of the model was evaluated by area under the receiver operating characteristic (ROC) curve (AUC), calibration curves and decision curve analysis (DCA).

RESULTS

528 out of 3962 participants (13.3%) developed MCR. Multivariate logistic regression analysis showed that weakness, chronic pain, limb dysfunction score, visual acuity score and Five-Times-Sit-To-Stand test were predictors of MCR in older adults. Using these factors, a nomogram model was constructed. The AUC values for the training and validation sets of the predictive model were 0.735 (95% CI = 0.708-0.763) and 0.745 (95% CI = 0.705-0.785), respectively.

CONCLUSION

The nomogram constructed in this study is a useful tool for assessing the risk of MCR in older adults, which can help clinicians identify individuals at high risk.

摘要

目的

本研究旨在为老年人运动认知风险综合征(MCR)建立风险预测模型。

方法

参与者从 2015 年中国健康与退休纵向研究数据库中选取,随机分为训练组和验证组,比例分别为 70%和 30%。使用 LASSO 回归分析筛选预测因子。然后,将确定的预测因子纳入多变量逻辑回归分析,并用于构建模型列线图。通过接受者操作特征曲线(ROC)下面积(AUC)、校准曲线和决策曲线分析(DCA)评估模型性能。

结果

3962 名参与者中有 528 名(13.3%)发生 MCR。多变量逻辑回归分析显示,虚弱、慢性疼痛、肢体功能障碍评分、视力评分和五倍坐立试验是老年人 MCR 的预测因子。利用这些因素构建了一个列线图模型。预测模型的训练集和验证集 AUC 值分别为 0.735(95%CI=0.708-0.763)和 0.745(95%CI=0.705-0.785)。

结论

本研究构建的列线图是评估老年人 MCR 风险的有用工具,有助于临床医生识别高风险个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ed/11246282/47f1ae4a709f/40520_2024_2797_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验